Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/3949
Τίτλος: | One-to-many Neural Network Mapping Techniques for Face Image Synthesis | Συγγραφείς: | Jayne, Chrisina Christodoulou, Chris Lanitis, Andreas |
Major Field of Science: | Humanities | Field Category: | Arts | Λέξεις-κλειδιά: | Face--Imaging;Neural computers | Ημερομηνία Έκδοσης: | Αυγ-2012 | Πηγή: | Expert Systems with Applications, 2012, vol. 39, no.10, pp. 9778-9787 | Volume: | 39 | Issue: | 10 | Start page: | 9778 | End page: | 9787 | Περιοδικό: | Expert systems with applications | Περίληψη: | This paper investigates the performance of neural network-based techniques applied to the problem of defining the relationship between a particular type of variation in face images and the multivariate data distributions of these images. In this respect the problem of defining a mapping associating a quantified facial attribute and the overall typical facial appearance is addressed. In particular the applicability of formulating a mapping function using neural network-based methods like Multilayer Perceptrons (MLPs), Radial Basis Functions (RBFs), Mixture Density Networks (MDNs) and a latent variable method, the General Topographic Mapping (GTM) is investigated. Quantitative and visual results obtained during the experimental investigation, suggest that for one-to-many problems, where the entire variance of the distribution is not required, the RBFs are the best options when compared to MLPs, MDNs and GTM. The proposed techniques can be applied to applications involving face image synthesis and other applications that require one-to-many mapping transformations. | URI: | https://hdl.handle.net/20.500.14279/3949 | ISSN: | 09574174 | DOI: | 10.1016/j.eswa.2012.02.177 | Rights: | © 2012 Elsevier | Type: | Article | Affiliation: | Coventry University Cyprus University of Technology University of Cyprus |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
50
4
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
3
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
558
Last Week
1
1
Last month
4
4
checked on 3 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα