Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/3949
DC FieldValueLanguage
dc.contributor.authorJayne, Chrisina-
dc.contributor.authorChristodoulou, Chris-
dc.contributor.authorLanitis, Andreas-
dc.date.accessioned2013-02-13T13:51:30Zen
dc.date.accessioned2013-05-17T09:55:52Z-
dc.date.accessioned2015-12-09T10:25:31Z-
dc.date.available2013-02-13T13:51:30Zen
dc.date.available2013-05-17T09:55:52Z-
dc.date.available2015-12-09T10:25:31Z-
dc.date.issued2012-08-
dc.identifier.citationExpert Systems with Applications, 2012, vol. 39, no.10, pp. 9778-9787en_US
dc.identifier.issn09574174-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/3949-
dc.description.abstractThis paper investigates the performance of neural network-based techniques applied to the problem of defining the relationship between a particular type of variation in face images and the multivariate data distributions of these images. In this respect the problem of defining a mapping associating a quantified facial attribute and the overall typical facial appearance is addressed. In particular the applicability of formulating a mapping function using neural network-based methods like Multilayer Perceptrons (MLPs), Radial Basis Functions (RBFs), Mixture Density Networks (MDNs) and a latent variable method, the General Topographic Mapping (GTM) is investigated. Quantitative and visual results obtained during the experimental investigation, suggest that for one-to-many problems, where the entire variance of the distribution is not required, the RBFs are the best options when compared to MLPs, MDNs and GTM. The proposed techniques can be applied to applications involving face image synthesis and other applications that require one-to-many mapping transformations.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofExpert systems with applicationsen_US
dc.rights© 2012 Elsevieren_US
dc.subjectFace--Imagingen_US
dc.subjectNeural computersen_US
dc.titleOne-to-many Neural Network Mapping Techniques for Face Image Synthesisen_US
dc.typeArticleen_US
dc.collaborationCoventry Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Cyprusen_US
dc.subject.categoryArtsen_US
dc.journalsSubscriptionen_US
dc.reviewPeer Reviewed-
dc.countryUnited Kingdomen_US
dc.countryCyprusen_US
dc.subject.fieldHumanitiesen_US
dc.identifier.doi10.1016/j.eswa.2012.02.177en_US
dc.dept.handle123456789/126en
dc.relation.issue10en_US
dc.relation.volume39en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage9778en_US
dc.identifier.epage9787en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.journal.journalissn0957-4174-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Multimedia and Graphic Arts-
crisitem.author.facultyFaculty of Fine and Applied Arts-
crisitem.author.orcid0000-0001-6841-8065-
crisitem.author.parentorgFaculty of Fine and Applied Arts-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 50

4
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

558
Last Week
1
Last month
4
checked on Jan 3, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.