Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/23207
Τίτλος: | Weighted hypersoft configuration model | Συγγραφείς: | Voitalov, Ivan Van der Hoorn, Pim Kitsak, Maksim A. Papadopoulos, Fragkiskos Krioukov, Dmitri V. |
Major Field of Science: | Natural Sciences | Field Category: | Physical Sciences | Λέξεις-κλειδιά: | Physics;Physics and Society;Statistical Mechanics;Network;Topology;Weighted hypersoft configuration model;Joint distribution;Power-law degree distribution;Superlinear scaling between strengths and degrees;Sparsity | Ημερομηνία Έκδοσης: | Δεκ-2020 | Πηγή: | Physical Review Research, 2020, vol. 2, no. 4, articl. no. 043157 | Volume: | 2 | Issue: | 4 | Περιοδικό: | Physical Review Research | Περίληψη: | Maximum entropy null models of networks come in different flavors that depend on the type of constraints under which entropy is maximized. If the constraints are on degree sequences or distributions, we are dealing with configuration models. If the degree sequence is constrained exactly, the corresponding microcanonical ensemble of random graphs with a given degree sequence is the configuration model per se. If the degree sequence is constrained only on average, the corresponding grand-canonical ensemble of random graphs with a given expected degree sequence is the soft configuration model. If the degree sequence is not fixed at all but randomly drawn from a fixed distribution, the corresponding hypercanonical ensemble of random graphs with a given degree distribution is the hypersoft configuration model, a more adequate description of dynamic real-world networks in which degree sequences are never fixed but degree distributions often stay stable. Here, we introduce the hypersoft configuration model of weighted networks. The main contribution is a particular version of the model with power-law degree and strength distributions, and superlinear scaling of strengths with degrees, mimicking the properties of some real-world networks. As a byproduct, we generalize the notions of sparse graphons and their entropy to weighted networks. | URI: | https://hdl.handle.net/20.500.14279/23207 | ISSN: | 26431564 | DOI: | 10.1103/PhysRevResearch.2.043157 | Rights: | © The Author(s). Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license | Type: | Article | Affiliation: | Northeastern University Eindhoven University of Technology Delft University of Technology Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
PhysRevResearch.2.043157.pdf | 5.08 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
5
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
6
Last Week
0
0
Last month
0
0
checked on 28 Σεπ 2023
Page view(s)
328
Last Week
5
5
Last month
7
7
checked on 24 Νοε 2024
Download(s)
200
checked on 24 Νοε 2024
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons