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Maximum entropy null models of networks come in different flavors that depend on the type of constraints
under which entropy is maximized. If the constraints are on degree sequences or distributions, we are dealing
with configuration models. If the degree sequence is constrained exactly, the corresponding microcanonical
ensemble of random graphs with a given degree sequence is the configuration model per se. If the degree
sequence is constrained only on average, the corresponding grand-canonical ensemble of random graphs with
a given expected degree sequence is the soft configuration model. If the degree sequence is not fixed at all
but randomly drawn from a fixed distribution, the corresponding hypercanonical ensemble of random graphs
with a given degree distribution is the hypersoft configuration model, a more adequate description of dynamic
real-world networks in which degree sequences are never fixed but degree distributions often stay stable. Here,
we introduce the hypersoft configuration model of weighted networks. The main contribution is a particular
version of the model with power-law degree and strength distributions, and superlinear scaling of strengths with
degrees, mimicking the properties of some real-world networks. As a byproduct, we generalize the notions of
sparse graphons and their entropy to weighted networks.
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I. INTRODUCTION

Many real-world complex systems that can be represented
as networks [1,2] require weighted representations in which
connections between nodes are characterized by positive
weights [3]. For example, in modeling the global spread of an
epidemic using an air transportation network as a backbone,
it is important to know not only that there exists a flight from
airport i to airport j, but also the volume of the passenger flow
between the two airports. This volume is usually encoded as
the link weight wi j [4,5].

Within the plethora of weighted and unweighted network
models developed in network science to study the structure
and function of real-world networks, maximum-entropy mod-
els [6–16] play a special role. They serve as null models that
are indispensable in studying the intricate interdependencies
between different network properties [17–27]. Within this
class of models, perhaps the most studied are classical ran-
dom graphs [28–31] that maximize ensemble entropy with the
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average degree constrained to a given value. They do not re-
produce heterogeneous degree distributions observed in many
real-world networks [32], which motivated the development
of the configuration model.

The configuration model (CM) [33,34] is a microcanonical
ensemble of random graphs with sharp constraints on the
degree sequence, meaning that every graph in this ensemble
has exactly the same degree sequence, e.g., the one observed
in a real-world network. In the CM, every graph satisfy-
ing the constraint has the same probability in the ensemble.
All other graphs are excluded. The soft configuration model
(SCM) [6,8,10,35,36] is a grand-canonical ensemble of ran-
dom graphs with soft constraints on the degree sequence. This
means that the expected degree sequence in the ensemble is
equal to a given degree sequence.

In both CM and SCM, a fixed degree sequence is the
constraint under which the ensemble entropy is maximized,
either micro- or grand-canonically. This constraint, however,
does not properly reflect the dynamic nature of node degrees
observed in many real networks, where the degrees of all
nodes may constantly change, while the shape of the degree
distribution stays stable [37,38]. These observations motivated
the development of the hypersoft configuration model.

The hypersoft configuration model (HSCM) [14,39–41] is
a hypercanonical ensemble of random graphs whose entropy
is maximized under the constraint that the degree distribution

2643-1564/2020/2(4)/043157(24) 043157-1 Published by the American Physical Society

https://orcid.org/0000-0002-2250-1274
https://orcid.org/0000-0002-6862-6021
https://orcid.org/0000-0002-4072-5781
https://orcid.org/0000-0001-9478-8182
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043157&domain=pdf&date_stamp=2020-10-29
https://doi.org/10.1103/PhysRevResearch.2.043157
https://creativecommons.org/licenses/by/4.0/


IVAN VOITALOV et al. PHYSICAL REVIEW RESEARCH 2, 043157 (2020)

TABLE I. Configuration models of unweighted and weighted
networks. The subject of this paper is the WHSCM.

Maximum entropy Unweighted Weighted
constraints models models

Exact degree (and strength) sequence CM WCM
Expected degree (and strength) sequence SCM WSCM
Degree (and strength) distribution HSCM WHSCM

has a given shape. The HSCM belongs to the class of models
with hidden variables [40], meaning that each node has a
latent parameter sampled from a fixed distribution. This latent
distribution defines the degree distribution, so that by tuning
the former, one can reproduce any shape of the latter.

The ((H)S)CM story outlined above for unweighted net-
works finds an incomplete and somewhat distorted reflection
in weighted networks where the constraints under which en-
tropy is maximized are on both degrees and strengths of
nodes [12]. The weighted configuration model (WCM) is a
microcanonical ensemble of networks with sharp constraints
on both the degree and strength sequences. Every weighted
graph in this ensemble has the same degree and strength
sequences, and the same probability in the ensemble. How-
ever, we note that several models that come under the WCM
name [12,42,43] are not really as defined above. The weighted
soft configuration model (WSCM) [9,12,13,15] is a grand-
canonical ensemble of networks with soft constraints on the
degree and strength sequences, meaning that the expected
degree and strength sequences in the ensemble are equal to
given degree and strength sequences.

In this paper, we introduce the weighted hypersoft configu-
ration model (WHSCM) which is a hypercanonical ensemble
of networks with a fixed joint distribution of degrees and
strengths. Similar to the HSCM, the WHSCM is a hidden
variable model where each node has two latent parameters
sampled from a fixed joint distribution which defines the
joint distribution of degrees and strengths. We summarize the
taxonomy of the (((W)H)S)CM models in Table I.

Besides introducing the WHSCM in general, the main
focus of this paper is a much more involved task, which is
to identify the joint distribution of latent parameters that re-
produces several features of degree and strength distributions
observed in many real weighted networks [3,44–48]. Specif-
ically, these features are: (1) power-law degree distribution,
(2) superlinear scaling between strengths and degrees, and
(3) sparsity. The last one means that the average degree is
constant as a function of the network size.

We proceed by first providing all the necessary motiva-
tion and background information in Sec. II that ends with
the introduction of the most general form of the WHSCM.
In Sec. III, we document in detail the real-world-network-
dictated properties, mentioned above, that we want our
particular power-law version of the WHSCM to reproduce.
To reproduce those properties, we need some experimental
input from the WSCM as defined in Ref. [15], a subject of
Sec. IV. Based on this input, we derive in Sec. V the WHSCM
latent parameter distribution that satisfies the requirements
of Sec. III. We check in simulations that these requirements

are indeed satisfied in Sec. VI. To demonstrate how the con-
structed model can be used in the analysis of real-world
networks, we juxtapose several real-world networks and their
WHSCM counterparts in Sec. VII. We conclude in Sec. VIII
with the discussion of obvious and less obvious limitations,
caveats, wishful thoughts, and abstract remarks. We release
our implementation of the WHSCM graph generator in a
software package available at GitHub [49].

II. MOTIVATION, BACKGROUND, AND GENERAL
WHSCM

A. Maximum entropy models

Understanding mechanisms that drive formation of com-
plex networks and dynamical processes running in them is
a crucial task in network science [50]. It is commonly be-
lieved that many real complex systems are self-organizing,
i.e., adjusting their structure to optimize their function [51].
Because of that, a lot of past research was dedicated to finding
structural network properties that may be indicative of yet
unknown optimization mechanisms behind network evolution
and function [51–53]. However, due to potentially strong
interdependencies between different structural properties of
networks [17–20], it is important to ensure that a property of
interest is indeed a salient feature, and not a mere consequence
of some of its other structural properties. A method that is
often used to make this check is to compare the significance
of the structural property present in a given network with re-
spect to the same property in benchmark null model networks
[21–24]. This step should be taken with care as choosing an
inappropriate null model for a given network may lead to
wrong conclusions about its functional and structural features
[25–27].

The maximum entropy network null models
[6,8,9,12,13,16,54] have proven to be an indispensable
tool in avoiding possible statistical biases caused by
interdependencies of structural network properties. These
models are ensembles of networks that reproduce given
structural properties, and that are maximally random in all
other respects. This maximal randomness is important for
a great variety of tasks [17–27]. For a basic example, if
a maximum entropy null model is defined by property X
observed in a real-world network, and if the model also
reproduces some other property Y of the network, then we
know right away that Y is not a salient independent feature,
but a statistical consequence of X [20].

Maximum entropy network models are usually formulated
for a given observed network G∗ of size n in terms of sets
of constraints. These constraints are usually some properties
C(G∗) of network G∗ that the model is required to reproduce.
We note that the constraints do certainly not have to be prop-
erties of any real network, they can be any set of (artificial)
network properties, but what we describe is the most common
application scenario.

Given constraints C(G∗), the model is then an ensemble of
graphs G of the same size n as the original graph G∗, with
each graph G ∈ G appearing in the ensemble with probability
P(G), known as the ensemble distribution. The ensemble dis-
tribution in a maximum entropy model defined by constraints
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C(G∗) is the unique unbiased probability distribution P(G)
that maximizes Gibbs/Shannon entropy

S = −
∑
G∈G

P(G) ln P(G), (1)

and that satisfies the constraints C(G∗) and the normalization
condition

∑
G∈G P(G) = 1 [16,55].

B. Unweighted configuration models

In the simplest case of undirected and unweighted net-
works, the degrees of all nodes in a given network are
frequently used as constraints in maximum entropy null mod-
els. The simplest example is the configuration model.

1. Configuration model (CM)

The configuration model (CM) [33,34] is a microcanon-
ical ensemble of graphs with the same degree sequence as
observed in a real network. That is, given the degree sequence
{k∗

1 , . . . , k∗
n } = k∗ observed in a graph G∗, the CM ensemble

consists of all graphs G with exactly the same degree se-
quence, i.e., for each degree sequence k(G) of an ensemble
graph G, the following holds:

k(G) = k∗. (2)

The distribution P(G) that maximizes Shannon entropy in
Eq. (1) is the uniform distribution over the set of all graphs
whose degree sequence is k∗, meaning that for these graphs
P(G) = 1/Nk∗ and S = lnNk∗ , where Nk∗ is the number of
graphs with the degree sequence k∗. For all other graphs,
P(G) = 0.

2. Soft configuration model (SCM)

The Soft configuration model (SCM) [6,8,10,35,36] is
a grand-canonical ensemble of graphs whose expected
degree sequence is constrained to a given (observed) se-
quence. Specifically, given a degree sequence k∗, the SCM
constraint is ∑

G∈G
k(G)P(G) = k∗, (3)

where k(G) is the degree sequence in an ensemble graph G.
Since the degree sequence used as a constraint is reproduced
only in expectation, it does not have to consist of integers
only; the expected degrees can be any positive real numbers.

As in any (grand)canonical ensemble, the Shannon entropy
in the SCM is usually maximized using the method of La-
grange multipliers [6], yielding the familiar Gibbs/Boltzmann
exponential family distribution

P(G) = e−HSCM(G)

Z
(4)

with Hamiltonian

HSCM(G) =
∑

(i, j)∈P
(νi + ν j )ai j =

∑
i

νiki(G), (5)

where νi is the Lagrange multiplier coupled to node i, ki(G) i’s
degree in G, P the set of all node pairs, ai j the adjacency
matrix of G, and Z = ∑

G∈G e−HSCM(G) the partition function.

In statistical terms, these equations say that the degree se-
quence is the sufficient statistics in the ensemble, so that all
graphs with the same degree sequence have the same proba-
bility in the ensemble.

Graphs G can be sampled from the ensemble distribution
P(G) constructively by walking over all node pairs i, j and
linking them with the Fermi-Dirac connection probability

pi j = p(νi, ν j ) = 1

1 + eνi+ν j
. (6)

The expected degree κi of node i in the ensemble is thus

κi =
∑

j

pi j, (7)

so that the values of the Lagrange multipliers νi for a given k∗
are found as the solution of the system of n equations

κi = k∗
i . (8)

3. Hypersoft configuration model (HSCM)

The Hypersoft configuration model (HSCM) [14,39–41] is
a hypercanonical ensemble of graphs defined by the constraint
that the expected degree distribution has a given form. The
HSCM can be viewed as a hyperparametrization of the SCM,
in that the Lagrange multipliers ν are not fixed by any degree
sequence as solutions of (8), but random, sampled indepen-
dently for each node i from a fixed distribution ρ(ν):

νi ← ρ(ν). (9)

Having a sampled sequence of Lagrange multipliers νi, the
nodes are then connected as in the SCM, with the Fermi-Dirac
connection probability in Eq. (6).

The expected degree κ (ν) of a node with Lagrange multi-
plier ν in the ensemble is

κ (ν) = n
∫

p(ν, ν ′)ρ(ν ′) dν ′, (10)

where p(ν, ν ′) is from Eq. (6). It is convenient to abuse the
notations by defining the expected degree random variable
κ via

κ = κ (ν), (11)

where the left-hand side (l.h.s.) κ is a random variable, but the
right-hand side (r.h.s.) κ (ν) is a function, defined in Eq. (10),
of the random variable ν whose distribution is ρ(ν). That is,
the last equation is a change of latent variables from ν to κ .
One can show [14] that in sparse graphs the κ (ν) function can
be well approximated as

κ (ν) = κ0eR−ν =
√

k̄n e−ν, (12)

where R and κ0 are the interchangeable parameters that con-
trol the expected average degree k̄ = κ2

0 e2R/n in the ensemble.
With this approximation, the Fermi-Dirac connection proba-
bility in Eq. (6) can be rewritten in terms of the κ variables as

p(κi, κ j ) = 1

1 + k̄n
κiκ j

. (13)
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As proven in [56], the classical limit (or Chung-Lu [35,36])
approximation

pcl (κi, κ j ) = min
(

1,
κiκ j

k̄n

)
(14)

to the connection probability (13) “almost always works,”
in the sense that the HSCM ensembles of random graphs
defined by the connections probabilities (13) and (14) are
asymptotically equivalent under very mild assumptions on the
distribution of κ .

Since Eq. (11) defines the relation between the two random
variables κ and ν, it also defines the relation between their
distributions ρ(ν) and ρ(κ ) via the standard formula

ρκ (κ ) = ρν[ν(κ )]|ν ′(κ )|, (15)

where ν(κ ) is the inverse function of κ (ν) and ν ′(κ ) its
derivative. By the definition of κ , its distribution ρ(κ ) is the
distribution of expected degrees in the HSCM, the analogy of
the expected degree sequence κi (7) in the SCM. Therefore the
HSCM analogy of the SCM constraints (8) is

ρ(κ ) = ρ∗(κ ), (16)

where ρ∗(κ ) is any desired expected degree distribution. For
example, it can be a pure power law, i.e., the continuous Pareto
distribution

ρ(κ ) = (γ − 1)κγ−1
0 κ−γ , κ > κ0 > 0. (17)

In view of Eq. (12), the distribution of the Lagrange multipli-
ers ν is exponential in this case:

ρ(ν) = (γ − 1)e(γ−1)(ν−R), ν ∈ (−∞, R]. (18)

The general exact expression for the expected average de-
gree in the ensemble is

k̄ = κ̄ =
∫

κρ(κ ) dκ =
∫

κ (ν)ρ(ν) dν. (19)

In sparse graphs, the expected degree distribution ρ(κ )
defines the degree distribution P(k) via

P(k) =
∫

Pois(k|κ )ρ(κ ) dκ, (20)

where Pois(k|κ ) is the Poisson distribution with mean κ

[40,57,58]. The Poisson distribution appears here as the n →
∞ limit of the distributions of sums of n Bernoullis with
random rates pi j whose sum

∑
j pi j converges to κi. The

distributions P(k) in the form (20) are called mixed Poisson
distributions with κ the mixing parameter [59]. A short proof
that the degree distribution in the HSCM is a mixed Poisson
distribution can be found in Th. 3.1 in Ref. [57], for instance.
The proof relies on the observation that the generating func-
tion of the degree distribution is the generating function of
the mixed Poisson distribution. The shape of a mixed Poisson
distribution P(k) follows the shape of the distribution of its
mixing parameter ρ(κ ). For example, if ρ(κ ) is Pareto with
exponent γ , then the Pareto-mixed Poisson distribution is also
a power law, albeit impure, with the same exponent, P(k) ∼
k−γ , or in stricter terms, it is a regularly varying distribution
with exponent γ [32].

FIG. 1. The nested hierarchy of the configuration models. Sam-
pling a graph G from the hypercanonical HSCM ensemble can
be done in three steps: (1) sample a sequence κ = {κi} of ex-
pected degrees independently from the distribution ρ(κ ), i.e., from
PHSCM(κ|ρ ) = ∏

i ρ(κi ); (2) sample a degree sequence k = {ki} from
the SCM degree sequence distribution PSCM(k|κ); and (3) sample
graph G from the uniform CM distribution PCM(G|k). The HSCM
probability distribution can thus be written as a chain PHSCM(G|ρ ) =∫

κ

∑
k PCM(G|k)PSCM(k|κ)PHSCM(κ|ρ ) dκ showing that the ensemble

at the next level of the hierarchy is a probabilistic mixture of the
ensembles at the previous level. In the graphon theory [60], one
has to consider the fourth highest level (not shown) where ρ is also
random. Moving up in the hierarchy adds new sources of random-
ness, thus increasing entropy. Since PSCM(k|κ) is intractable—it is
a mixture of mixed Poisson distributions—in practice it is much
easier to sample graphs as described in the text. The same picture
applies to the weighted case upon the addition of strengths s and their
expectations σ.

As shown in Ref. [14] and discussed in Appendix A, the
entropy of HSCM graphs is maximized across all graphs
whose degree distribution converges to a given distribution.

The nested hierarchy of the described configuration models
is visualized in Fig. 1.

C. Weighted configuration models

For weighted networks, the configuration models are analo-
gous to those for unweighted networks discussed above. They
are formulated in terms of constraints on both degrees and
strengths of nodes.
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1. Weighted configuration model (WCM)

The WCM is a microcanonical ensemble of weighted
networks with sharp constraints on the degree and strength se-
quences k∗ and s∗. The ensemble consists of weighted graphs
that have exactly the same degree and strength sequences as
in the observed graph:

k(G) = k∗, (21)

s(G) = s∗. (22)

Analogously to its unweighted version, the distribution max-
imizing Shannon entropy is the uniform distribution over
all graphs with the joint degree-strength sequence equal to
(k∗, s∗). This ensemble is well defined and such a uniform
distribution always exists because the space of weight matri-
ces {wi j} representing graphs satisfying the constraints (21)
and (22) is always of a finite volume (Lebesgue measure) if
weights are real, or of a finite cardinality if they are integer.
Indeed, since all weights are positive, they all are bounded by
the minimum strength of the two incident nodes: 0 < wi j �
min(s∗

i , s∗
j ).

We note that there exist several network models introduced
under the WCM name in the past that are different from
the WCM definition above. Specifically, in Ref. [42], the
authors consider the unweighted multigraph CM with degree
sequences following power-law distributions with γ < 2. In
these settings, multiple links between the same pairs of nodes
are present with high probability. These multiple links are
treated as weights in Ref. [42]. In Ref. [12], the WCM is a
model in which only the strength sequence is fixed, but the
degree sequence is not fixed. In Ref. [43], the WCM is a model
in which the degree sequence is fixed, while the weights
of links attached to a node are sampled from a distribution
that is allowed to depend on the node degree. To the best of
our knowledge, the WCM as we defined it above has been
introduced only in [61], albeit under a different name.

2. Weighted soft configuration model (WSCM)

The WSCM [9,12,13,15] is a grand-canonical ensemble of
networks whose expected degree and strength sequences are
constrained to given (observed) sequences. For any given (ob-
served) degree and strength sequences k∗ and s∗, the WSCM
constraints are ∑

G∈G
k(G)P(G) = k∗, (23)

∑
G∈G

s(G)P(G) = s∗, (24)

where k(G) and s(G) are the degree and strength sequences of
an ensemble graph G. As in the unweighted case, Shannon en-
tropy is maximized using the method of Lagrange multipliers
leading to the ensemble distribution

P(G) = e−HWSCM(G)

Z
(25)

with Hamiltonian

HWSCM(G) =
∑

(i, j)∈P
(νi + ν j )ai j +

∑
(i, j)∈E

(μi + μ j )wi j

=
∑

i

νiki(G) + μisi(G), (26)

where νi and μi are the Lagrange multipliers coupled to node
i, constraining its degree ki(G) and strength si(G), ai j and
wi j are the adjacency and weight matrices of G, P and E
are the sets of node pairs and connected node pairs, and
Z = ∑

G∈G e−HWSCM(G) the partition function. The sufficient
statistics are thus the degree and strength sequences, so that
all graphs with the same degree and strength sequences have
the same probability in the ensemble.

The WSCM was defined and studied both for positive
integer- [9,12,13] and real-valued weights [15]. In the latter
case the graphs can be sampled constructively from the en-
semble distribution P(G) as follows. First, every pair of nodes
i and j is connected with the connection probability

pi j = p(νi, μi, ν j, μ j ) = 1

1 + eνi+ν j (μi + μ j )
. (27)

Second, every established link i, j is weighted by a random
weight wi j sampled from the exponential distribution with rate
μi + μ j :

wi j ← exp(w|μi + μ j ) = (μi + μ j )e
−(μi+μ j )w. (28)

The expected weight of link i, j is then

ωi j = ω(νi, μi, ν j, μ j ) = p(νi, μi, ν j, μ j )

μi + μ j
= pi j

μi + μ j
.

(29)
The expected degree κi and strength σi of node i in the ensem-
ble are thus

κi =
∑

j

pi j, (30)

σi =
∑

j

ωi j, (31)

so that the Lagrange multipliers νi, μi are found for given
k∗, s∗ as the solution of the system of the 2n equations

κi = k∗
i , (32)

σi = s∗
i . (33)

3. Weighted hypersoft configuration model (WHSCM)

We introduce the WHSCM here as a hypercanonical
ensemble of weighted networks with positive real-valued
weights. The maximum entropy constraint of the model is
that the joint distribution of expected degrees and strengths
has a given form. Similar to the HSCM, which is a
hyperparametrization of the SCM, the WHSCM is a hyper-
parametrization of the WSCM, meaning that the Lagrange
multipliers νi, μi of node i are not fixed by any fixed degree
and strength sequences. Instead, νi, μi are random, sampled
independently for each node i from a fixed joint probability
distribution ρ(ν, μ):

(νi, μi ) ← ρ(ν, μ). (34)
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Having a joint sampled sequence of Lagrange multipliers
νi, μi, the nodes are then connected as in the WSCM, with the
connection probability in Eq. (27), and the established links
are weighted by random weights in Eq. (28).

The expected degree κ (ν, μ) and strength σ (ν, μ) of a node
with Lagrange multipliers ν and μ in the ensemble are

κ (ν, μ) = n
∫∫

p(ν, μ, ν ′, μ′)ρ(ν ′, μ′) dν ′ dμ′, (35)

σ (ν, μ) = n
∫∫

ω(ν, μ, ν ′, μ′)ρ(ν ′, μ′) dν ′ dμ′, (36)

where p, ω are from Eqs. (27) and (29). As in the HSCM, it is
convenient to abuse the notations by introducing the expected
degree and strength random variables κ and σ via

κ = κ (ν, μ), (37)

σ = σ (ν, μ), (38)

thus changing latent random variables from ν, μ to κ, σ . The
joint distribution of the latter is given by the standard formula

ρκ,σ (κ, σ ) = ρν,μ[ν(κ, σ ), μ(κ, σ )]

∣∣∣∣ ∂ (ν, μ)

∂ (κ, σ )

∣∣∣∣, (39)

where ν(κ, σ ), μ(κ, σ ) are the inverse functions of
κ (ν, μ), σ (ν, μ), and |∂ (ν, μ)/∂ (κ, σ )| is the absolute
value of the determinant of the Jacobian:∣∣∣∣ ∂ (ν, μ)

∂ (κ, σ )

∣∣∣∣ =
∣∣∣∣ ∂ν

∂κ

∂μ

∂σ
− ∂ν

∂σ

∂μ

∂κ

∣∣∣∣. (40)

By the definition of κ and σ , their joint distribution ρ(κ, σ )
is the joint distribution of expected degrees and strengths
in the WHSCM, the analogy of the joint expected degree
sequence κi, σi [(30) and (31)]—joint via node index i—in
the WSCM. Therefore the WHSCM analogy of the WSCM
constraints [(32) and (33)] is

ρ(κ, σ ) = ρ∗(κ, σ ), (41)

where ρ∗(κ, σ ) is any desired joint distribution of expected
degrees and strengths.

The marginal distributions ρ(κ ) and ρ(σ ) of the joint
distribution ρ(κ, σ ) are the distributions of expected degrees
and strengths in the ensemble. Therefore the expected average
degree and strengths in the model are given by

k̄ = κ̄ =
∫

κρ(κ ) dκ =
∫∫

κ (ν, μ)ρ(ν, μ) dν dμ, (42)

s̄ = σ̄ =
∫

σρ(σ ) dσ =
∫∫

σ (ν, μ)ρ(ν, μ) dν dμ. (43)

The joint distribution ρ(κ, σ ) of expected degrees κ and
strengths σ defines the joint distribution of actual degrees k
and strengths s via

P(k, s) =
∫∫

P(k, s|κ, σ )ρ(κ, σ ) dκ dσ. (44)

Unfortunately, the conditional joint distribution P(k, s|κ, σ )
of degrees and strengths k, s of nodes of a given expected
degree and strength κ, σ is in general unknown. It is not even
known, in general, what the closed form expression is for the
conditional distribution P(s|σ ) of strengths s of nodes of a

given expected strength σ , which appears in the expression
for the strength distribution

P(s) =
∫

P(s|σ )ρ(σ ) dσ. (45)

In view of Eq. (28), P(s|σ ) is the distribution of a sum of expo-
nential random variables with different random rates. The best
what is known about such distributions—that are called hy-
poexponential distributions—are some bounds on their tails,
but only for fixed, not random rates [62]. These distributions
P(s|σ ) are definitely not as simple and well-studied as Poisson
distributions P(k|κ ), so that very little appears to be known
about mixtures of the former a la in (45). However, it is known
[40] that for sparse graphs the conditional distribution P(k|κ )
of degrees k of nodes with a given expected degree κ in the
WHSCM is still Poisson, as in the HSCM, so that Eq. (20)
holds in the WHSCM as well.

In Appendix A, we generalize the notions of sparse
graphons and their entropy to weighted networks. This gen-
eralization allows us to discuss how to extend the HSCM
maximum entropy proof to the WHSCM case, thus show-
ing that the entropy of graphs in the WHSCM ensemble
defined above is maximized across all graphs whose joint
distribution of strengths and degrees converges to a given joint
distribution.

The main focus of the rest of the paper is to identify the
latent parameter distribution ρ(ν, μ) that leads to joint degree-
strength distributions P(k, s) observed in real-world weighted
networks. In what follows, we first formulate in the next
section this real-world-inspired form of P(k, s) that we want
our specific version of the general WHSCM to reproduce, and
then derive the ρ(ν, μ) that leads to this P(k, s).

III. SPECIFIC WHSCM REQUIREMENTS

According to our general definition of the WHSCM model
in the previous section, a specific version of the model is fixed
by a particular choice of the joint degree-strength distribu-
tion P(k, s). Here we document a specific set of properties
of this joint distribution, dictated by the properties of many
real-world weighted networks [3,45–48], that we want our
specific version of the general WHSCM introduced above to
reproduce.

First, we require the degree distribution P(k), a marginal
of P(k, s), to be a power law

P(k) ∼ k−γ (46)

with γ > 2. Here by “power law” and the “∼” sign, we mean
that P(k) is a regularly varying distribution [32] which is a
distribution whose complementary CDF satisfies

F̄ (k) = 	(k)k−(γ−1), (47)

where 	(k) is a slowly varying function. Our power laws will
be Pareto-mixed Poisson distributions whose 	(k)s converge
to constants, limk→∞ 	(k) = c.

Second, we require the strength of nodes to grow super-
linearly with their degrees, as observed in many real weighted
networks [3,47,48]. This observation is often expressed as

s̄(k) ∼ kη, (48)
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where η � 1 and s̄(k) is the average strength of nodes of
degree k. We interpret this relation to mean that

lim
k→∞

s̄(k)

kη
= s0 (49)

for some constant s0.
If the distributions P(s|k) of strengths s of nodes of degree

k are concentrated around their expected values, and the de-
gree distribution P(k) is a power law with exponent γ , then
the resulting strength distribution P(s) is a power law with
exponent δ:

P(s) ∼ s−δ, (50)

δ = 1 + γ − 1

η
. (51)

If η > γ − 1, then the strength distribution P(s) has exponent
δ < 2, meaning that for such combinations of γ and η, the
strength distribution P(s) has an infinite first moment, so that
the average strength s̄ diverges. We do not want to exclude
this possibility from our model, since such combinations of
the values of γ and η can be found in real networks [48].

Third, we want our model to produce networks whose
average degree k̄, given by Eq. (42), is independent of the
network size n. A model satisfying this condition is said to
produce sparse networks.

To simplify the problem significantly, we next observe that
if the actual degrees k and strengths s are concentrated around
their expected values κ and σ—and this is indeed the case
as we show in Appendix B—then the requirements discussed
above can be formulated in terms of κ, σ instead of k, s.

We are thus looking for a model in which the distribution
ρ(κ ) of expected degrees κ follows a power law with exponent
γ > 2,

ρ(κ ) ∼ κ−γ , (52)

and the expected strengths σ grow super-linearly with ex-
pected degrees κ . For further simplicity, we want expected
strengths and degrees to be deterministically related via

σ = σ0κ
η, (53)

where σ0 > 0. This choice instantly fixes the joint expected
degree-strength distribution to

ρ(κ, σ ) = ρ(κ )δ(σ − σ0κ
η ), (54)

where δ() is the Dirac delta function, while the expected
strengths are distributed as

ρ(σ ) ∼ σ−δ, where (55)

δ = 1 + γ − 1

η
. (56)

The parameters of a WHSCM model satisfying the dis-
cussed requirements are thus

γ , δ, k̄, σ0. (57)

The reason for having σ0 as a parameter instead of the more
natural average strength s̄, given by Eq. (43), is that the latter
is actually infinite if δ < 2 as discussed above. However, σ0

is well defined even in this case, and controls the baseline of

the scaling of strength as a function of degree. If δ > 2, the
expected average strength s̄ is finite and in one-to-one relation
to σ0 via

s̄ = σ0

∫
κηρ(κ ) dκ. (58)

IV. NUMERICAL EXPERIMENTS IN SEARCH OF A
SOLUTION

We are to find the latent parameter distribution ρ(ν, μ)
that yields the distribution ρ(κ, σ ) of expected degrees and
strengths that we want in Eq. (54). Unfortunately, the ac-
complishment of this task using brute force does not appear
possible since it involves solving a system of nonlinear in-
tegral equations, as we will see below. Therefore, in this
section, we retreat to numeric experiments and describe a
workaround that relies on getting some experimental hints
from the WSCM.

First, for convenience and consistency with the power-law
HSCM described in Sec. II, we change variables from ν

to λ via

λ = eR−ν . (59)

The support of ν is (−∞, R], so that the support of λ is [1,∞).
We will see that R is the parameter that controls the average
degree k̄ and constant σ0, and that it grows logarithmically
with n, Appendix C. With this change of variables, the con-
nection probability and expected weight change from (27)
and (29) to

p(λi, μi, λ j, μ j ) = 1

1 + e2R · μi+μ j

λiλ j

, (60)

ω(λi, μi, λ j, μ j ) = 1

1 + e2R · μi+μ j

λiλ j

· 1

μi + μ j
, (61)

while the expected degree and strength as functions of the
latent variables change from (35) and (36) to

κ (λ,μ) = n
∫ ∞

1
dλ′

∫ ∞

0
dμ′ ρ(λ′, μ′)

1 + e2R · μ+μ′
λλ′

, (62)

σ (λ,μ) = n
∫ ∞

1
dλ′

∫ ∞

0
dμ′ ρ(λ′, μ′)(

1 + e2R · μ+μ′
λλ′

)
(μ + μ′)

.

(63)

Observe that since weights are positive, the support of μ is
(0,∞).

With this change of variables our task becomes to find
ρ(λ,μ) producing κ = κ (λ,μ) and σ = σ (λ,μ) such that
(1) κ is a power-law-distributed random variable (52) and
(2) σ is a superlinear function of κ (53). The brute-force
solution of this task is the solution of the system of the two
two-dimensional nonlinear integral Eqs. (62) and (63) with
respect to ρ(λ,μ), so that the resulting ρ(κ, σ ) is as required
in (54). The required amount of brute force for this task is
well beyond our analytical strength, so that we have to retreat
to numeric investigations.
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FIG. 2. Basic structural properties of networks in the WHSCM
with power-law hidden-variable distributions in Eqs. (64)–(66). Ten
networks of size n = 20 000 are generated with α = 2.5, β =
2.0, a = 1.0, and R = 6.0. The resulting average degree is about 20.
(a) and (b) show the complementary cumulative distribution func-
tions (CCDF) of degrees and strengths, while (c) shows the average
strengths of nodes of degree k.

A. WHSCM with power-law hidden-variable distributions

The most reasonable choice of ρ(λ,μ) appears to be a
clean power-law one. Indeed, as recalled in Sec. II B, such a
clean power-law choice of the distribution of latent parameters
results in power-law degree distributions in the HSCM, so that
one may expect the situation to be similar in the WHSCM.
Unfortunately, this expectation is not correct as we show next.
To see this, let us set the distribution ρ(λ) to be a pure power
law, i.e., the Pareto distribution,

ρ(λ) = (α − 1)λ−α, α > 2, λ > 1, (64)

and couple λ and μ deterministically via

ρ(λ,μ) = ρ(λ)δ(μ − f (λ)), (65)

f (λ) = aλ−β, β � 0, (66)

where δ() is the Dirac delta function, so that ρ(μ) ∼
μ(α−1)/β−1 is another Pareto if β > α − 1. We then generate
random networks in this version of the WHSCM, and report
their basic structural properties in Fig. 2. We see that contrary
to our expectations, the degree and strength distributions do
not look like clean power laws, and that the degree distribution
appears to be a double power law. Appendix D contains some
analytical arguments explaining this behavior.

B. Experimental hints from the WSCM

Given that the simple Pareto choice of the joint probabil-
ity distribution ρ(λ,μ) does not lead to weighted networks
with desired properties, we devise a workaround, looking
for an ansatz for ρ(λ,μ) based on hints from the WSCM.
Specifically, we attempt to “reverse engineer” the distribu-
tion ρ(λ,μ) by inferring the values of variables λi, μi in
the WSCM for synthetically generated degree and strength
sequences that satisfy our desired WHSCM constraints
in Sec. III.

The inference is done using maximum likelihood estima-
tion (MLE) by finding a set of values λi, μi that maximize
the log-likelihood L = ln P(G) of a weighted graph G in the
WSCM. The probability P(G) of G in the WSCM ensemble
is given by Eq. (25). The partition function Z in that equation
is calculated in [15] to yield the following explicit expression

for P(G):

P(G) =
∏

(i, j)∈P

e−(νi+ν j+ln (μi+μ j ))ai j

1 + e−(νi+ν j+ln (μi+μ j ))
·

·
∏

(i, j)∈E
(μi + μ j )e

−(μi+μ j )wi j , (67)

where ai j and wi j denote the entries of the adjacency and
weight matrices of G, and P and E denote the sets of node
pairs and connected node pairs in G. Using∑

(i, j)∈P
(νi + ν j )ai j =

n∑
i=1

kiνi, (68)

∑
(i, j)∈P

(μi + μ j )wi j =
n∑

i=1

siμi, (69)

where ki, si are the degree and strength of node i in graph G,
the expression for the logarithm-likelihood simplifies to

ln P(G) =
n∑

i=1

[kiνi + siμi] −
∑

(i, j)∈P
ln

[
1 + 1

eνi+ν j (μi+μ j )

]
.

(70)

Observe that ln P(G) depends on graph G only via its degree
k and strength s sequences, because they are the sufficient
statistics in this grand-canonical ensemble. Furthermore, the
probability P(k, s|κ, σ ) of the degree-strengths sequence k, s
in the WSCM ensemble defined by the expected degree-
strength sequence κ, σ is at its maximum for k = κ and s = σ

[10,16]. Therefore, to execute our MLE program, all we have
to do is to generate synthetic degree-strength sequences satis-
fying the requirements in Sec. III, and then feed them to the
MLE applied to the ln P(G) above.

We do so as follows: for i = 1, . . . , n, we sample real
random numbers xi from the Pareto distribution with exponent
γ > 2 and mean x̄ = 10, and then round them to the closest
integers to yield degrees sequences ki = [xi]. The exponent γ

and mean x̄ of the Pareto distribution determine the xmin =
x̄(γ − 2)/(γ − 1) of its support [xmin,∞), so that upon this
rounding the kmin degree is statistically different from the
other degrees, but this difference has no effect on the tail
exponent of the resulting distribution of kis, which is always
guaranteed to be the same γ [32]. The strengths are then set to
si = σ0kη

i for some σ0 > 0 and η � 1. The obtained sequences
of degrees {k1, . . . , kn} and strengths {s1, . . . , sn} are then sup-
plied to the MLE inference of the parameters {ν1, . . . , νn} and
{μ1, . . . , μn} by maximizing the ln P(G) in Eq. (70) which
is done using the simulated annealing algorithm available in
the PaGMO package [63]. The inferred {ν1, . . . , νn} are then
mapped to {λ1, . . . , λn} via (59) with R = maxi νi. Another
way to find λi, μi is to solve numerically the system of 2n
equations in Eqs. (32) and (33). As noted in Ref. [12], this
way leads to the same results. In our experiments, however,
we find that the MLE approach produces more numerically
stable results, so that we use this approach instead.

The obtained sequences {λ1, . . . , λn} and {μ1, . . . , μn} for
different values of γ and η are shown in Fig. 3. From this
figure, we extract several hints suggesting a possible shape of
the joint distribution of latent variables ρ(λ,μ):
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FIG. 3. Maximum likelihood estimation of the latent parameters in the WSCM with power-law degree and strength sequences. Degree
sequences of length n = 3000 are sampled from the Pareto distribution with varying power-law exponent γ , and then rounded to the closest
integer. The corresponding strengths are set to si = σ0kη

i . The expected average degree is set to k̄ = 10 and σ0 = 0.1. (a)–(c) show scatter plots
of the inferred parameters λ, μ for varying values of η and γ = 2.2, 2.6, and 3.0. The inset in (a) shows the λ-μ scatter plot for η = 1.7,
γ = 2.2 along with the power-law fit lines for small-λ and large-λ regions. (d)–(f) show the complementary CDFs of the λ parameter for
varying values of η and γ = 2.2, 2.6, and 3.0. The inset in (d) shows the complementary CDF of the λ parameter for η = 1.7, γ = 2.2 along
with the power-law fit lines for small-λ and large-λ regions.

(1) The variable μ can be directly coupled to the variable
λ via some function f (λ) as indicated by the λ-μ scatter plots;

(2) The visual inspection of the λ-μ scatter plots on the
log-log scale suggests that this function scales approximately
as a power law for small and large values of λ, potentially
with two different exponents, i.e., f (λ) ∼ λ−β1 when λ → 1,
and f (λ) ∼ λ−β2 when λ 	 1;

(3) The complementary CDF F̄ (λ) behaves approximately
as a power law for small and large values of λ, potentially with
two different exponents α1 and α2.

V. WEIGHTED HYPERSOFT CONFIGURATION MODEL
WITH POWER-LAW DEGREE AND STRENGTH

DISTRIBUTIONS

Here we rely on the observations at the end of the previous
section to specify a particular version of the WHSCM model
that satisfies the requirements in Sec. III. These observations
instruct us to set the joint distribution of latent parameters
λ,μ to

ρ(λ,μ) = ρ(λ)δ(μ − f (λ)), (71)

where δ() is the Dirac delta function. This setting fixes the
WHSCM-definitive distribution ρ(ν, μ) via the change of
variables (59), but ρ(λ) and f (λ) are still to be specified.

We specify them, again following the hints from the end of
the previous section, as follows. The distribution of λ is set to

ρ(λ) =
{

A1λ
−α1 , 1 < λ � λc,

A2λ
−α2 , λc < λ < ∞,

(72)

where α1 > 1, α2 > 1, and λc is a crossover point between the
two power laws with exponents α1 and α2, whereas A1, A2 are
the normalization constants given by

A1 = (α1 − 1)(α2 − 1)

λ
1−α1
c (α1 − α2) + (α2 − 1)

, (73)

A2 = A1λ
α2−α1
c , (74)

while the function f (λ) is set to

f (λ) =
{

aλ−β1 , 1 < λ � λc,

aλβ2−β1
c λ−β2 , λc < λ < ∞,

(75)

where a > 0, β1 � 0, β2 � 0. With these settings, our
model is fully specified by the following set of parameters:
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(1) exponents α1, α2, β1, β2, and (2) parameters R and a, that
we move on to specify below. The double power law crossover
point λc may also appear as a free parameter, but we set it to
be a function of other parameters as follows.

Recall that the connection probability p(λi, μi, λ j, μ j ) in
the model is given by Eq. (60). The crossover point λc is
selected in such a way that for λi, λ j below λc this connection
probability can be approximated by dropping the 1 in the
denominator, analogous to the classical limit approximation
of the Fermi-Dirac distribution function in statistical physics
[14]. This means that the constant λc defines the point where
the term 1 in the denominator in (60) is comparable to the
other term there. Therefore we define λc to be the value of
λi, λ j such that e2R × μi+μ j

λiλ j
= 1, so that

λc = (2ae2R)
1

2+β1 . (76)

We show in Appendix E that with the settings above, the
expected degree of a node with latent parameter λ can be
written as

κ (λ) =
{

I1(λ) + I2(λ), 1 < λ � λc,

I3(λ) + I4(λ), λc < λ < ∞,
(77)

where the integrals I1-I4 are explicitly defined in Eqs. (E1)–
(E4). Similarly, the expected strength of a node with latent
parameter λ can be written as

σ (λ) =
{

I5(λ) + I6(λ), 1 < λ � λc,

I7(λ) + I8(λ), λc < λ < ∞,
(78)

where the integrals I5-I8 are explicitly defined in Eqs. (E13)–
(E16). We also show in Appendix E that the functions κ (λ)
and σ (λ) can be well approximated by power laws

κ (λ) ∼
{
λφ1 , if 1 < λ � λc,

λφ2 , if λc < λ < ∞,
(79)

σ (λ) ∼
{
λχ1, if 1 < λ � λc,

λχ2 , if λc < λ < ∞,
(80)

where φ1 � 1, 0 < φ2 � 1, χ1 � φ1, χ2 � φ2, and that with
these approximations, the distributions of expected degrees
and strengths do indeed exhibit power-law behavior:

ρ(κ ) ∼
{

κ
−(1+ α1−1

φ1
)
, if κ (1) < κ � κ (λc),

κ
−(1+ α2−1

φ2
)
, if κ (λc) < κ < ∞,

(81)

ρ(σ ) ∼
{

σ
−(1+ α1−1

χ1
)
, if σ (1) < σ � σ (λc),

σ
−(1+ α2−1

χ2
)
, if σ (λc) < σ < ∞.

(82)

Now, if we know how the scaling exponents φ1, φ2, χ1, χ2

behave as functions of the model parameters, we can easily se-
lect those parameters to ensure that ρ(κ ) ∼ κ−γ for all values
of λ, and that ρ(σ ) ∼ σ−δ with δ = 1 + γ−1

η
as required in

Sec. III. In Appendix E, we find φ1, φ2, χ1, χ2 as functions of
α1, α2, β1, β2, and show that the following nontrivial choice of
the latter as functions of γ , η produces the desired outcome:

α1 = 1 + η(γ − 1), (83)

β1 =
(

γ − γ − 2

γ

)
(η − 1), (84)

α2 = 1 + α1 − 1

1 + β1

[
1 + (γ − 2)

(
1 − 1

η

)]
, (85)

β2 =
{

0, if η = 1,

α2 − 1 + η(α2−1)
γ−1 , if η > 1.

(86)

The choice of the model parameters above is obtained using a
series of approximations outlined in Appendix E. We find in
simulations that this choice produces networks with desired
properties if γ > 2 and η � 2 as we will see below.

Finally, we have to express the R and a parameters as
functions of the average degree k̄ and σ0. In the λ terms, the
average degree is equal to

k̄ =
∫ ∞

1
κ (λ)ρ(λ) dλ. (87)

Both R and a appear in this integral. The second equation
defining these two parameters is σ = σ0κ

η. For any given
value of the latent parameter λ = λ0, we can write

σ0 = σ (λ0)

[κ (λ0)]η
. (88)

For the reasons explained in Appendix E, we set the λ0 to the
value such that κ (λ0) = k̄. By solving numerically the system
of Eqs. (87) and (88) with the λ0 set to this value, we find the
values of the parameters R and a. With these solutions, the
model is fully specified.

Weighted hypersoft configuration model with power-law
degree and strength distributions

To summarize, the graphs in the described power-law WH-
SCM can be generated using the following algorithm.

(1) For a given set of input parameters, which are the
network size n, the degree distribution power law exponent
γ > 2, the strength-degree scaling exponent η � 1, the aver-
age degree k̄, and the constant σ0 controlling the baseline of
the strength-degree scaling.

(2) Find the model parameters α1, α2, β1, β2, R, a using
Eqs. (83)–(88).

(3) For each node i = 1, . . . , n, sample λi from the PDF
in Eq. (72), and set μi = f (λi) according to Eq. (75).

(4) For each node pair (i, j), draw the link between them
with probability given by Eq. (60).

(5) For each node pair (i, j) linked at the previous step,
draw the weight of the link from the exponential distribution
with rate μi + μ j , Eq. (28).

We provide an implementation of this algorithm at the
GitHub repository [49].

VI. SIMULATION RESULTS FOR SYNTHETIC
NETWORKS

Here we check in simulations that the specific version of
the general WHSCM model documented at the end of the pre-
vious section produces networks satisfying the requirements
in Sec. III.

We first generate graphs of size n = 105 with the aver-
age degree k̄ = 10 and σ0 = 0.1 for γ ∈ {2.2, 2.6, 3.0} and
η ∈ {1.0, 1.1, 1.3, 1.5, 1.7, 1.9}. For each combination of the
parameters, 20 graph instances are generated. The resulting
empirical complementary CDFs of degrees k and the average
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FIG. 4. Structural properties of synthetic networks in the power-law WHSCM model defined in Sec. V. The parameters used to generate the
networks are n = 105, k̄ = 10, σ0 = 0.1, γ ∈ {2.2, 2.6, 3.0}, and η ∈ {1.0, 1.1, 1.3, 1.5, 1.7, 1.9}. For each combination of the parameters, 20
network instances are generated. (a), (d), and (g) show the empirical complementary CDFs (CCDFs) of node degrees for γ = 2.2, 2.6, and 3.0.
Each panel shows 20 degree CCDF curves corresponding to the 20 network instances. The curves with the same value of exponent η are of the
same color. The black dashed lines show the imposed values of the power-law exponent γ . Panels (b), (e), and (h) show the empirical CCDFs
of node strengths for γ = 2.2, 2.6, 3.0. The black lines denote the power laws with the imposed values of δ − 1 where the strength power-law
exponent δ is related to γ and η via δ − 1 = (γ − 1)/η. Panels (c), (f), (i) show the strength-degree correlations for γ = 2.2, 2.6, 3.0. The
average strength s̄(k) of nodes of degree k is shown for all the 20 network instances. The curves with the same η are of the same color. The
black lines show the functions s(k) = σ0kη with the imposed values of η. For clarity, the strength CCDFs are shown for s � 10−2.

strengths s̄(k) of nodes of degree k are shown in Fig. 4. We
see that the generated networks indeed have power-law degree
distributions with the prescribed values of exponent γ , and
that the strength-degree correlations follow the super-linear
law with the prescribed values of exponent η. Figure 5 quanti-
fies this further, also showing the convergence of the inferred

values of γ and δ to their target values for the networks of
growing sizes n. Since the networks are random, so are their
inferred γ , δ. We see that the means of the distributions of
γ , δ come closer to their target values as n grows, while
their variances decrease. The lack of an exact match in cer-
tain cases even for the largest considered network size can
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FIG. 5. Inferred power-law exponents of the degree and strength distributions in synthetic WHSCM networks. Synthetic networks of
varying sizes n ∈ [102, 105] are generated using the power-law WHSCM from Sec. V with the shown matrix of values of parameters γ , η.
All networks have k̄ = 10 and σ0 = 0.1. For each combination of parameters and sizes n, 20 random networks are generated. The degree
distribution power-law exponent γ and the strength distribution power-law exponent δ are then inferred using the power-law exponent
estimation software from [32]. The box plots show the distributions of the inferred values of γ , δ. The box plot settings are standard: the
whiskers are the 5th and 95th percentiles, and the box boundaries are the 25th and 75th percentiles of the distributions; the black lines within
the boxes are the medians. The dashed and dotted lines show the target values of γ and δ used to generate the networks.

be attributed to that this size is still not sufficiently large,
as well as to imperfections of the model and the exponent
estimator. The estimation precision of the latter for a given
n is unknown [32].

To demonstrate how the degree-strength distributions, con-
strained in the maximum entropy manner, implicitly constrain
some other network properties to some not exactly trivial
values, we measure the weight disparity [64–66] in the gen-

erated networks. The weight disparity Yi is a quantity that
characterizes the heterogeneity of weights of links incident to
node i. It is defined as

Yi =
∑
j∈Ni

(
wi j

si

)2

, (89)

where Ni denotes the set of neighbors of node i, wi j the
weight of the link between nodes i and j, and si the strength
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FIG. 6. Weight disparity as a function of node degree in the
power-law WHSCM. The figure shows the log-binned average
weight disparity Ȳ (k) of nodes of degree k in the power-law WH-
SCM networks with γ = 2.2, 2.6, 3.0 and η = 1.0, 1.1, 1.3, 1.9.
The black dashed lines show the 1/k scaling. In all the generated net-
works, the other parameters are set to n = 105, k̄ = 10, and σ0 = 0.1.

of i. If most of the strength of node i is concentrated in
the weights of a few links incident to i, then Yi is close to
1. If all the links incident to i carry the same weight si/ki,
then Yi is equal to 1/ki. To characterize the local distribution
of weights in a weighted network as a whole, the average
weight disparity Ȳ (k) of nodes of degree k is often looked at
Ref. [67]. If Ȳ (k) ∼ 1/k for all degrees k, then the weights are
homogeneously distributed among all links and all nodes. An
average weight disparity function decaying slower than 1/k,
as observed in many real networks [48,66], indicates that the
link weights are distributed more heterogeneously.

In Fig. 6, we show the average weight disparity functions
Ȳ (k) in the generated WHSCM networks. We observe that the
weight disparity behaves quite differently for different values
of the scaling exponent η. For small values of η, the weight
disparity as a function of degree scales roughly as Ȳ (k) ∼ 1/k
in the lower to mid-range degree values. For larger values of
γ this behavior persists even for large degrees, indicating that
weights are distributed homogeneously for nodes of both low
and high degrees. However, if η is larger, the high degree
behavior of Ȳ (k) changes entirely, and the function starts to
increase with the degree k. This indicates that the higher the
degree of a node, the more heterogeneous the distribution of
weights among its links.

The intuition behind this effect is that the higher the
exponent η, the larger the strengths of the high-degree
nodes. In order for these nodes to satisfy their demanding
strength constraints without disturbing the small strengths
of low-degree nodes attached to them, they have to allocate
increasingly heavier weights on their links to other high-
degree nodes. This creates a weighted connectivity pattern
where large portions of the strengths of high-degree nodes are
distributed among the links interconnecting the high-degree,
high-strength nodes. This weighted rich-club pattern is sim-
ilar in spirit to the unweighted rich-club effect [25–27]. It is
important to reemphasize that this seemingly nontrivial effect
is caused purely by simple constraints on low-order network
properties—namely, by heterogeneous degree distributions
and superlinear scalings of strengths with degrees.

VII. POWER-LAW WHSCM VERSUS REAL-WORLD
NETWORKS

Finally, we demonstrate a use case scenario involving the
power-law WHSCM to construct null model graphs for the
following three real-world weighted networks.

TABLE II. The WHSCM parameters measured in the three real-
world networks.

Network name n k σ0 γ η

C. elegans metabolic [68–70] 453 8.94 1.3 2.5 1.154
Comp. geo. collab. [71] 6,158 3.86 1.0 2.6 1.333
Bible proper nouns [70,72] 1,773 10.30 0.66 3.1 1.313

(1) C. elegans metabolic network [68–70], where nodes are
metabolites and links indicate interactions between them, with
the link weight representing the number of such interactions.

(2) Computational geometry collaborations network [71],
where nodes are authors publishing works on computa-
tional geometry and links between them represent co-
authorship, with the link weight representing the number of
co-authored works.

(3) Bible proper nouns network [70,72], where nodes
are proper nouns of places and names in the King James
Version of the Bible and links between them indicate that
a pair of nouns are mentioned in the same Bible verse,
with link weights representing the number of such noun co-
occurrences.

To construct null model graphs for these networks, we first
measure the WHSCM input parameters in these real networks.
We find the n and k̄ parameters directly from the networks,
the power-law exponent γ is found using the package from
Ref. [32], and the exponent η and σ0 are found by a linear
fit of degrees and strengths in the log-log scale. The resulting
values for the three networks are shown in Table II.

Using the parameters from Table II, we generate ten syn-
thetic WHSCM network instances for each of the three real
networks, and compare the basic structural properties of the
real networks and their WHSCM null model counterparts.
Specifically, we look at the following properties: (1) the com-
plementary CDF (CCDF) of degrees, F̄ (k); (2) the average
strength of nodes as a function of their degrees, s̄(k); (3)
the average weight disparity of nodes as a function of their
degrees, Ȳ (k); (4) the average local clustering coefficient of
nodes as a function of their degrees, c̄(k); and (5) the average
weighted local clustering coefficient of nodes as a function of
their strengths, c̄w(s).

The last, less familiar property is defined in Ref. [73] for a
node i as

c(i)
w = 1

ki(ki − 1)

∑
( j,k)∈N (i)

(w̃i jw̃ jkw̃ki )
1/3, (90)

where ( j, k) are all the pairs of neighbors N (i) of the node
i, and w̃ denotes the link weight rescaled by the maximum
weight observed in the network. The function c̄w(s) is the
average of c(i)

w across all nodes i whose strength is s. If weights
are real, every node has a unique strength with high probabil-
ity, so that this function is a scatter plot consisting of n data
points, one data point for every node.

Juxtaposing these properties in the considered real net-
works against their WHSCM counterparts in Fig. 7, we
observe that the properties fixed by the WHSCM are well-
captured by the null model graphs, as expected. Moreover,
even though the weight disparity is not explicitly constrained
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FIG. 7. Real networks vs their WHSCM counterparts. Each row in the figure corresponds to one of the three real weighted networks
described in Sec. VII, as indicated by the network names at the top of each row. Each column in the figure shows different structural properties
of the real networks: (a), (f), and (k) show the degree CCDFs, with the dashed blacked lines indicating the pure power-law scalings with
the exponents γ listed in Table II; (b), (g), and (l) show the average strength as a function of node degree, s̄(k), with the black dashed lines
indicating the pure scalings with the exponents η shown in Table II, and the gray dashed lines indicating the linear scaling; (c), (h), and (m)
show the average weight disparity, defined in Eq. (89), as a function of node degree, with the gray dashed lines indicating the 1/k scaling of the
weight disparity corresponding to the perfectly homogeneous distribution of local weights; (d), (i), and (n) show the average local clustering
coefficient as a function of node degree; (e), (j), and (o) show the average weighted local clustering coefficient, defined in Eq. (90), as a function
of node strength. The data for the real networks are shown in the orange color, while the data for the synthetic WHSCM networks are in blue.
For each real networks, ten random WHSCM graphs are generated using the power-law WHSCM with the parameters listed in Table II.

in the WHSCM, it nevertheless behaves in a qualitatively
similar manner in the real and null model networks.

However, both the unweighted and weighted clustering
coefficients are much lower in the null models than in the
real networks. To quantify this difference a bit further, we
average the unweighted and weighted clustering coefficients
across all nodes in the real networks and across all nodes in all
the ten WHSCM replicas of the real networks. The results are
shown in Table III. We see that in all the three real networks,
both the unweighted and weighted average clustering is much
higher, often by orders of magnitude, than in their null model
counterparts. This observation suggests that the clustering

coefficient is a statistically significant structural feature of
these networks that cannot be explained by power-law degree
and strength distributions alone. Some other mechanisms,
such as latent geometry [48], are thus responsible for the
formation of clustering in these real networks.

VIII. DISCUSSION

There exist a plenty of weighted network models with tun-
able degree and strength distributions [46–48,74–84]. Here,
we have contributed to this list by introducing the unique
unbiased null model, the WHSCM, that satisfies the maximum

TABLE III. The unweighted and weighted average local clustering coefficients c̄u,r , c̄w,r in the considered real weighted networks and in
their synthetic WHSCM counterparts, c̄u,s, c̄w,s.

Network name c̄u,r c̄u,s c̄w,r c̄w,s

C. elegans metabolic 6.5 × 10−1 2.2 × 10−2 6.6 × 10−3 2.8 × 10−3

Comp. geo. collab. 4.9 × 10−1 3.2 × 10−2 4.7 × 10−3 8.2 × 10−5

Bible proper nouns 7.2 × 10−1 4.6 × 10−2 5.2 × 10−3 5.0 × 10−4
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entropy requirement. The model produces random graphs
whose entropy is maximal across all graphs whose joint
distribution of degrees and strengths converges to a given
distribution. The outline of the proof that this is indeed so in
Appendix A is not as detailed as the proof of the maximum
entropy properties of the HSCM in Ref. [14]. The WHSCM
proof can thus be improved by filling in all the missing details.

In developing a particular version of the model with power-
law degree and strength distributions, we encountered the
major challenge in the form of the system of nonlinear integral
equations (35), (36) or (62), (63) that need to be solved to find
the latent parameter distribution ρ(ν, μ) or ρ(λ,μ). These
equations appear intractable, so that we devised a workaround
that worked well. Yet one may definitely question how good
our approach is in general, and how valid, reliable, and ac-
curate the double power-law modeling of the distributions in
Fig. 3 is in particular. We dedicated Appendix E to support our
double power-law assumption, but the argument there is not
very rigorous. Is there a better, more accurate model for these
distributions, possibly improving the convergence speeds in
Fig. 5? More generally, is there an entirely different, more
principled approach to the problem of finding (approximate)
solutions of the systems of Eqs. (35), (36), (62), and (63)?

It would be nice to have such an approach because one
may wish to constrain the degree-strength distributions not
necessarily to power laws but to something else—to truncated
power laws, for instance, observed in real weighted networks
[3,85–87]. What is the latent parameter distribution in this
case? In Fig. 2, we saw that a “clean” power-law choice of the
latent parameter distribution ρ(λ,μ) led to truncated power
laws for the marginals of P(k, s), but even with this clean
choice of ρ(λ,μ), things are difficult to control analytically
as Appendix D shows. In any case, for any desired strength-
degree distribution ρ(κ, σ ), the most principled solution is the
exact solution of the system of integral Eqs. (62) and (63) with
respect to the latent parameter distribution ρ(λ,μ).

We emphasize that the introduced null model is what it is,
a null model, so that it should be used as such. It should not
be confused with or considered as a realistic model of real-
world weighted networks. We saw, for instance, that the model
does not capture clustering observed in real networks. Latent
geometry was proposed in Ref. [48] as a possible mechanism
explaining clustering in real weighted networks. It would be
interesting to see whether the model in Ref. [48] satisfies the
maximum entropy requirements, and if so, then under what
constraints.

Related to that, it would be also nice to have a weighted
generalization of random hyperbolic graphs [88] whose max-
imum entropy properties are well understood and whose
infinite temperature limit is exactly the HSCM [89,90]. In
other words, what is the model of weighted random hyper-
bolic graphs that have analogous maximum entropy properties
and whose infinite temperature limit is the WHSCM?
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APPENDIX A: (W)HSCM AS ENTROPY MAXIMIZERS

Here we summarize the key points of the proof from
Ref. [14] that the HSCM random graphs maximize graph
entropy across all graphs whose degree distribution converges
to a given distribution, and show how to generalize this proof
to weighted graphs in the WHSCM.

1. HSCM as entropy maximizer

For a given distribution P(k) of node degrees k, what is the
graph ensemble whose ensemble distribution P(G) of graphs
G maximizes Shannon entropy (1) but in such a way that the
degree distribution in the ensemble converges to P(k)? As
proved in Ref. [14], the unique answer is the HSCM.

The proof is not exactly trivial because any brute-force at-
tack at it is doomed to fail since if understood literally, the task
is an intractable combinatorial optimization problem, a mis-
sion impossible. To circumvent this impasse, a workaround
collection of techniques, based on the graphon theory [60],
was devised in Ref. [14]. We describe this collection here.

The main idea of this workaround proof is to maximize not
the entropy S[P(G)] of the intractable ensemble distribution
P(G) but the graphon entropy defined below. Intuitively, the
graphon entropy is the entropy of random edges conditioned
on given values of the Lagrange multipliers νi. In other words,
for a given collection of fixed νis, the graphon entropy is
the SCM entropy. The maximization of the graphon entropy
turns out to be a tractable functional analysis problem with
an explicit unique solution, but there is another contribution
to the HSCM entropy which is the entropy of νis that are
not fixed but random in the HSCM. The crux of the proof
is to show that the entropy of the graphon that maximizes
the graphon entropy is the leading term in the graph entropy
S[P(G)], while the entropy of νis is subleading. Since so, the
graphon that maximizes the graphon entropy maximizes also
the graph entropy, thus solving the original entropy maximiza-
tion problem. We provide some key details behind how this
works next.

In the HSCM, the graphon is no mystery but just the con-
nection probability function p(ν, ν ′). This function literally
says that if the Lagrange multipliers of two nodes happen
to be ν and ν ′, then the link between them is the Bernoulli
random variable with the success rate p(ν, ν ′). Observe that
the Bernoulli random variable Be(p) is trivially the random
variable that maximizes the Shannon entropy of distributions
on {0, 1} with mean p. Recall that the Lagrange multipliers ν

as random variables can be mapped to the expected degrees κ

via (10) and (11) resulting in the graphon p(κ, κ ′) expressed
as a function of κs. Observe that if κ is now treated as a
latent variable, then the expected degree of a node with latent
variable κ is κ:

κ = n
∫

p(κ, κ ′)ρ(κ ′) dκ ′. (A1)
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The edges ai j in the HSCM are Bernoullis with different
success rates p(κi, κ j ) that are random because κs are random.
The entropy S[Be(p)] of the Bernoulli random variable with
the success rate p is

S[Be(p)] = −p ln p − (1 − p) ln(1 − p). (A2)

These observations justify the definition of the entropy S[p]
of the graphon p() in Ref. [60] which is

S[p] =
∫∫

S[Be(p(κ, κ ′))]ρ(κ )ρ(κ ′) dκ dκ ′. (A3)

What is the graphon p() that maximizes the graphon en-
tropy in Eq. (A3) while satisfying the constraint in Eq. (A1),
where ρ(κ ) is our desired expected degree distribution, the
one that yields the desired P(k)? As shown in Ref. [14], it is
relatively simple to prove that the unique exact answer is the
Fermi-Dirac graphon in Eq. (6) with νs mapped to κs via (10)
and (11). As also shown in Ref. [14], in sparse graphs this
exact solution is asymptotically equivalent to the approximate
expressions in Eqs. (13) and (14) that express the solution
graphon explicitly in terms of the κ variables.

Proving that the entropy of this graphon S[p] is the dom-
inating term in the graph entropy S[P(G)], in comparison to
entropy of random κs, is a much more delicate endeavor. For
this, the following techniques from [60] are properly adjusted
in Ref. [14].

First, it is easy to see that the graphon entropy is a trivial
lower bound for the HSCM graph entropy divided by

(n
2

)
.

Indeed, if all κs are fixed, then the graphon entropy in the
HSCM is the entropy of the SCM graphs with this graphon
divided by

(n
2

)
. The hard part is thus to find a matching upper

bound, and this is where the techniques from Ref. [60] come
really useful.

The key point in establishing such an upper bound is to
recognize that for any partition of the values of κs into con-
secutive intervals πk , k = 1, . . . , K , the entropy of P(G) is
upper-bounded by the entropy of the averaged graphon de-
fined below, plus the entropy of the indicator random variables
Iik that indicate whether the random expected degree κi of
node i happened to land in the interval πk . The averaged
graphon is defined as the piecewise constant function p̄(κ, κ ′)
whose values for the values of κ, κ ′ belonging to a given
rectangle πk × πk′ in the κ × κ ′ partition are equal to the av-
erage value of the graphon p(κ, κ ′) in this rectangle. Observe
that the smaller the number of the partition intervals K , the
smaller the total entropy of the indicator random variables Iik ,
just because there are fewer of them, but the larger the sum
of the error terms coming from graphon averaging, simply
because rectangles πk × πk′ are large. The smaller they are,
the smaller the total graphon entropy error term, but the larger
the total entropy of indicators Iik . The crux of the proof is
to find a “sweet spot”—the right number of intervals of the
right size guaranteeing the proper balance between these two
types of contributions to the upper bound, which we want to
be tighter than the difference between the graph and graphon
entropies. In sparse graphs, this task turns out to be a blade
runner exercise.

Notwithstanding these blade runner difficulties, the re-
quired partition πk was found in [14], completing the proof
that the HSCM is indeed the unique entropy maximizer across

all random graph ensembles whose degree distribution con-
verges to a given P(k).

2. WHSCM as entropy maximizer

The maximum entropy HSCM proof described in the pre-
vious section should apply to the WHSCM as well, upon the
modifications that we discuss below. The key idea behind
these modifications is a proper generalization of graphons and
their entropy to weighted networks.

Similar to the unweighted case, in the weighted case it is
more convenient to deal with the expected degree and strength
variables κ, σ instead of the Lagrange multipliers ν, μ. The
map from the latter to the former is given by Eqs. (35) and (36)
which, if rewritten in the κ, σ variables, become the system of
the self-consistency equations

κ = n
∫∫

p(κ, σ, κ ′, σ ′)ρ(κ ′, σ ′) dκ ′ dσ ′, (A4)

σ = n
∫∫

ω(κ, σ, κ ′, σ ′)ρ(κ ′, σ ′) dκ ′ dσ ′, (A5)

analogous to Eq. (A1).
In unweighted networks, graph edges ai j are Bernoullis

with different random success rates p(κi, κ j ):

ai j = Be[p(κi, κ j )]. (A6)

In weighted networks, the edges are no longer Bernoullis.
Instead they are random variables that we call Bernoulli ex-
ponential, or BeExp for short:

wi j = BeExp[p(κi, σi, κ j, σ j ), ω(κi, σi, κ j, σ j )], (A7)

where p and ω are the two parameters of the BeExp.
We define the vanilla BeExp as follows: if w =

BeExp(p, ω), where p ∈ [0, 1], ω > 0, and w � 0, then w =
0 with probability 1 − p, while with probability p, w is the
exponential random variable with mean ω (or rate 1/ω). In
other words, the PDF of the BeExp w = BeExp(p, ω) is

P(w) =
{

1 − p, if w = 0,
p
ω

e−w/ω, if w > 0,
(A8)

so that its entropy is

S[BeExp(p, ω)] = −
∫ ∞

0
P(w) ln P(w) dw

= −p ln p − (1 − p) ln (1 − p)

+ p(1 + ln ω)

= S[Be(p)] + pS[Exp(ω)], (A9)

where S[Exp(ω)] = 1 + ln ω is the entropy of the exponential
distribution with mean ω.

We observe that the BeExp(p, ω) can be intuitively thought
of as a “smearing” of the probability p of 1 (edge existence)
in Be(p) into the Exp(ω), the exponential distribution with
mean ω (edge weight). As Be(p) is trivially the maximum
entropy distribution on {0, 1} with mean p, so is BeExp(p, ω),
less trivially, the maximum entropy distribution on [0,∞)
with mean ω and P(w > 0) = p. That is, the BeExp(p, ω)
is the maximum entropy distribution under the constraints
that the edge exists with probability p and that its mean
weight is ω. It is common knowledge in statistical mechanics
that in maximum entropy canonical ensembles of systems
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of particles, the distributions of particles over particle states
are also maximum entropy (Fermi-Dirac or Bose-Einstein).
Since graph edges are analogous to particles in statistical
mechanics [6,9,15,16], these observations motivate us to
constrain the space of all possible probability distributions
on [0,∞) to the two-parametric maximum entropy BeExp
family.

Equation (A7) says that all edges in our weighted net-
works are BeExp’s, albeit with different random parameters
which are functions p(κ, σ, κ ′, σ ′) and ω(κ, σ, κ ′, σ ′) of ran-
dom κ, σ . Similar to the unweighted case, these observations
instruct us to define the weighted graphon to be the parame-
ters of our maximum entropy BeExp random variable. That
is, we define a weighted graphon as the pair of functions
{p(κ, σ, κ ′, σ ′), ω(κ, σ, κ ′, σ ′)}. Similar to the unweighted
graphon entropy in Eq. (A3), we then define the weighted
graphon entropy as

S[p, ω] =
∫∫∫∫

S{BeExp[p(κ, σ, κ ′, σ ′), ω(κ, σ, κ ′, σ ′)]}

× ρ(κ, σ ) ρ(κ ′, σ ′) dκ dσ dκ ′ dσ ′. (A10)

The rest of the proof then proceeds as in the unweighted
case, using the same techniques as in Ref. [14]: first show
that the unique graphon maximizing the graphon entropy in
Eq. (A10) subject to the constraints in Eqs. (A4) and (A5)
is given by Eqs. (27) and (29) with ν, μ mapped to κ, σ via
Eqs. (35) and (36), and then prove that the entropy of this
graphon dominates the graph entropy, while the entropy of
random κ, σ is negligible. The latter step could be challenging
as it calls for repeating the blade runner partition finding ex-
ercise from Ref. [14], this time for the product space of κ × σ

values. This should be still possible using the same ideas as in
Ref. [14]—roughly, the key idea is that the partition is such
that all its boxes have the same number of nodes in them
on average. However, for the specific power-law WHSCM
considered in this paper, or for any other WHSCM version
in which strengths σ are set to be a deterministic function of
degrees κ , we only need to partition the space of κ values.
That is, the settings are exactly as in Ref. [14] in that regard,
so that exactly the same partition as in Ref. [14] can be used
in these cases.

APPENDIX B: SIMULATION RESULTS FOR THE
RELATION BETWEEN EXPECTED AND ACTUAL

DEGREES AND STRENGTHS

The WHSCM is formulated in terms of constraints for
the joint distribution of expected degrees and strengths, while
in many cases we are interested in the behavior of actual
degrees and strengths realized in the corresponding ensemble
of graphs. Thus we need to show that the results obtained
so far for expected values also hold for actual degrees and
strengths. For latent variable graph models, it is known that
actual degrees are concentrated around their expected val-
ues, and distributed according to Poisson distribution, i.e.,
P(k|κ ) = Pois(κ ) [40]. Since no similar claims are known for
the behavior of strengths, we test the correlation between both
κ and k, and σ and s values in our model. To this end, we con-
structed log-binned scatter plots of actual degrees/strengths

FIG. 8. Correlation of the expected and actual degrees/strengths
in the WHSCM. Each row corresponds to the WHSCM input pa-
rameter γ indicated on the top. Each color-coded plot corresponds
to an η parameter indicated in the legend. The rest of the WHSCM
input parameters are n = 10, 000, k̄ = 10, and σ0 = 0.1. Data is
log-binned. Error bars show standard deviation from the bin mean.
Black dashed line shows perfect linear correlation.

versus their expected values in WHSCM graphs with varying
parameters γ and η. The results are shown in Fig. 8. From the
figure, it is evident that both degrees and strengths are highly
correlated with their expected values. The narrow error bars
also indicate that the distribution of actual degree/strength
values around their expected values are narrow. Thus, the
power-law scalings obtained for the expected values should
also hold for actual values, as we have already demonstrated
in the main text for various values of γ and η.

APPENDIX C: SCALING OF R WITH THE NUMBER
OF NODES

In the unweighted HSCM, the parameter R scales as R ∼
1
2 ln n with the network size n, which is evident from Eq. (12).
This motivated us to assume a similar scaling for the analysis
of the WHSCM. In this Appendix, we validate this choice by
studying numerically how the parameters R and a scale with
the system size in the WHSCM.
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n

n

n

FIG. 9. Scaling of the R and a parameters as a function of net-
work size n for various values of γ , η, and fixed values of k̄ = 10
and σ0 = 0.1.

To this end, we solve Eqs. (87) and (88) as function of
network size n for various input exponents γ , η, and fixed
values of average degree k̄ = 10, and expected strength-
degree scaling constant σ0 = 0.1. The resulting solution
curves are shown in Fig. 9. The solutions indicate that the
parameter R scales with n in the same way as in the un-
weighted HSCM case, while the parameter a varies slowly
with the network size. We note that since we solve for the
R, a numerically with fixed average degree requirement, the
resulting networks are guaranteed to have constant average
degree independent of network size, thus forming a sparse
ensemble of graphs.

APPENDIX D: WHSCM WITH POWER-LAW ρ(λ,μ)

Here we show that the WHSCM with the pure power-law
joint distribution of latent parameters

ρ(λ,μ) = ρ(λ)δ(μ − f (λ)), (D1)

ρ(λ) = (α − 1)λ−α, α > 2, (D2)

f (λ) = aλ−β, β � 0 (D3)

does not produce weighted networks with clean power-law
distributions of degrees and strengths. We show this for the
degree distribution P(k). Similar arguments apply to the
strength distribution P(s).

The expected degree of a node with the latent variable λ is
given by

κ (λ) = n
∫ ∞

1

(α − 1)λ′−α

1 + ae2R
[

λ−β+λ′−β

λλ′
]dλ′. (D4)

While this integral is not expressible in a closed form in
general, it is possible to find its approximations for different
values of parameters λ and β. For large β and λ → 1, the
approximation is

n
∫ ∞

1

(α − 1)λ′−α

ae2R
[

λ−β+λ′−β

λλ′
]dλ′

= n

ae2R

(α − 1

α − 2

)
λ1+β · ·2F1

(
1,

α − 2

β
, 1 + α − 2

β
,−λβ

)
.

(D5)

For large λ, the approximation is

n
∫ ∞

1

n(α − 1)λ′−α

1 + ae2R

λλ′1+β

dλ′ = n 2F1

(
1,

α − 1

1 + β
,
α + β

1 + β
,−ae2R

λ

)
.

(D6)

These two approximations have different scalings of κ (λ) with
λ that can be approximated by double power laws with two
different exponents φ1 � φ2 > 0. While we are not able to
obtain closed-form expressions for the exponents φ1, φ2 in
terms of the model parameters α, β in general case, from
numerical simulations we observe that networks generated
according to this version of the WHSCM have degree dis-
tributions with double-power-law-like behavior. At least the
degree distribution does definitely not look like a power but as
a power law with a power-law cutoff as Fig. 2 demonstrates.

In other words, a single power-law distribution with ex-
ponent α of the latent parameter λ results in two different
scaling exponents for the resulting degree distribution P(k),
that are equal to −(1 + (α − 1)/φ1) for small degrees k, and
−(1 + (α − 1)/φ2) for large degrees k. Such double-scaling
behavior is yet another motivation to use double power law
ρ(λ) that would match the two scalings and result in single
scaling of P(k) with single target exponent γ .

APPENDIX E: ANALYSIS OF EXPECTED DEGREES AND
STRENGTHS IN THE WHSCM

In the WHSCM, each node is characterized by the two
latent parameters λ and μ that are distributed according to
the joint probability distribution from Eq. (71). In Sec. V, we
stated expressions for the exponent α1, α2, β1 and β2 for the
densities of λ and μ. They are obtained from analysis of the
integral expressions for both κ and σ in Eqs. (62) and (63),
respectively.

1. Approximating the integral expressions for expected degrees

By our double power-law choice for the marginal distribu-
tions for λ and μ, the expected degree of a node with latent
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parameter λ, Eq. (62), may be written as the following four
integrals, where each integral represents one of combinations
for “small” (�λc) and “large” (>λc) parameters λ and λ′:

I1(λ) = n
∫ λc

1

A1λ
′−α1

1 + ae2R
(

λ−β1 +λ′−β1

λλ′
)dλ′, (E1)

I2(λ) = n
∫ ∞

λc

A2λ
′−α2

1 + ae2R
(

λ−β1 +λ
β2−β1
c λ′−β2

λλ′
)dλ′, (E2)

I3(λ) = n
∫ λc

1

A1λ
′−α1

1 + ae2R
(

λ
β2−β1
c λ−β2 +λ′−β1

λλ′
)dλ′, (E3)

I4(λ) = n
∫ ∞

λc

A2λ
′−α2

1 + aλ
β2−β1
c e2R

(
λ−β2 +λ′−β2

λλ′
)dλ′. (E4)

While these integrals cannot be computed directly in a closed-
form, it is possible to approximate them. For (E1), we use that
for both λ, λ′ < λc the 1 in the denominator can be removed.
This cannot be done for the other three integrals, since λ′ > λc

or λ > λc. Therefore, in the second integral (E2), we use that
λβ2−β1

c λ′−β2 � λ−β1
c and hence this term is negligible with re-

spect to λ−β1 when 1 � λ � λc. A similar approach is applied
to (E3), with the role of λ and λ′ reversed. Finally, for integral
(E4), we use that for λ, λ′ > λc,

λβ2−β1
c

(
λ−β2 + λ′−β2

λλ′

)
< 2λ−(2+β1 )

c ,

and, given that λc ≈ (2ae2R)1/(2+β1 ) and ae2R ∼ n, as we
demonstrate in Appendix C, we have

2λ−(2+β1 )
c ≈ 1

ae2R
� 1,

so that the 1 is the dominant term in the denominator.
This allows us to obtain the following approximations for

the integrals above:

I1(λ) ≈ n
∫ λc

1

A1λ
′−α1

ae2R
(

λ−β1 +λ′−β1

λλ′
)dλ′, (E5)

I2(λ) ≈ n
∫ ∞

λc

A2λ
′−α2

1 + ae2R
(

λ−1−β1

λ′
)dλ′, (E6)

I3(λ) ≈ n
∫ λc

1

A1λ
′−α1

1 + ae2R
(

λ′−1−β1

λ

)dλ′, (E7)

I4(λ) ≈ n
∫ ∞

λc

A2λ
′−α2 dλ′. (E8)

The four integrals on the right-hand side can be evaluated
exactly:

I1(λ) ≈ nA1λ
1+β1

ae2R(α1 − 2)
·
[

2F1

(
1,

α1 − 2

β1
, 1 + α1 − 2

β1
,−λβ1

)
− λ2−α1

c 2F1

(
1,

α1 − 2

β1
, 1 + α1 − 2

β1
,−

(
λ

λc

)β1
)]

,

(E9)

I2(λ) ≈ nA2λ
1−α2
c

α2 − 1
2F1

(
1, α2 − 1, α2,− ae2R

λcλ1+β1

)
, (E10)

I3(λ) ≈ nA1

α1 − 1

[
2F1

(
1,

α1 − 1

1 + β1
,
α1 + β1

1 + β1
,−ae2R

λ

)
− λ1−α1

c 2F1

(
1,

α1 − 1

1 + β1
,
α1 + β1

1 + β1
,− ae2R

λ
1+β1
c λ

)]
,

(E11)

I4(λ) ≈ nA2λ
1−α2
c

α2 − 1
, (E12)

where 2F1(q1, q2, q3, z) is Gauss hypergeometric function.

2. Approximating the integral expressions for
expected strengths

As was the case for the expected degree, the expected
strength as a function of the latent parameter λ, see Eq. (63),
may be split into four integrals as follows:

I5(λ) = n
∫ λc

1

A1λ
′−α1

1 + ae2R
(

λ−β1 +λ′−β1

λλ′
)

× 1

a(λ−β1 + λ′−β1 )
dλ′, (E13)

I6(λ) = n
∫ ∞

λc

A2λ
′−α2

1 + ae2R
(

λ−β1 +λ
β2−β1
c λ′−β2

λλ′
)

× 1

a
(
λ−β1 + λ

β2−β1
c λ′−β2

)dλ′, (E14)

I7(λ) = n
∫ λc

1

A1λ
′−α1

1 + ae2R
(

λ
β2−β1
c λ−β2 +λ′−β1

λλ′
)

× 1

a
(
λ

β2−β1
c λ−β2 + λ′−β1

)dλ′, (E15)

I8(λ) = n
∫ ∞

λc

A2λ
′−α2

1 + aλ
β2−β1
c e2R

(
λ−β2 +λ′−β2

λλ′
)

× 1

aλ
β2−β1
c (λ−β2 + λ′−β2 )

dλ′. (E16)

Using arguments similar to those for the expected degree, we
may find the following approximations for the integrals above:

I5(λ) ≈ nA1λ
1+β1

e2Ra2β1(1 + (λc/λ)β1 )

[
λβ1

c + λβ1

1 + λβ1

− λ2+β1−α1
c + (2 + β1 − α1)

(
λβ1

c + λβ1
)

α1 − 2

×
{

2F1

(
1,

α1 − 2

β1
, 1 + α1 − 2

β1
,−λβ1

)
− λ2−α1

c 2F1

(
1,

α1 − 2

β1
, 1 + α1 − 2

β1
,−

(
λ

λc

)β1
)}]

,

(E17)

I6(λ) ≈ nA2λ
1−α2
c λβ1

a(α2 − 1)
2F1

(
1, α2 − 1, α2,− ae2R

λcλ1+β1

)
, (E18)
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FIG. 10. Illustration of the approximation used to find expression
for κ and σ . The scheme is plotted on the log-log scale.

I7(λ) ≈ nA1

a(α1 − β1 − 1)

×
[

2F1

(
1,

α1

1 + β1
− 1,

α1

1 + β1
,−ae2R

λ

)
− λ1+β1−α1

c 2F1

(
1,

α1

1 + β1
− 1,

α1

1 + β1
,− ae2R

λ
1+β1
c λ

)]
,

(E19)

I8(λ) ≈ nA2λ
1+β1−α2−β2
c λβ2

a(α2 − 1)

× 2F1

(
1,

α2 − 1

β2
, 1 + α2 − 1

β2
,−

(
λ

λc

)β2
)

. (E20)

3. Approximating the behavior of the integrals with
power-law scalings

Unfortunately, it is hard to extract anything about the be-
havior of the κ (λ) or σ (λ) from the approximations that we
obtained above. However, numerical evaluation of the ex-
pressions above, shows that the expected degree κ (λ) scales
roughly as some power of the latent parameter λ, where the
scaling changes its exponent around the λc point, as shown in
Fig. 10. Similarly, the expected strength σ (λ) scales roughly
as some different power of the latent parameter λ, also chang-
ing the scaling exponent around the λc. We share the MATH-
EMATICA notebook kappa-sigma-approximations.nb to
plot the approximated functions κ (λ), σ (λ) for various values
of the model parameters at the GitHub repository [49].

We therefore seek for an approximation of the expected
degree function in the double power-law form that changes its

exponent at the constant λc, i.e.,

κ (λ) ∼
{
λφ1 , 1 < λ � λc,

λφ2 , λc < λ < ∞.
(E21)

Similarly, for the expected strength we have

σ (λ) ∼
{
λχ1, 1 < λ � λc,

λχ2 , λc < λ < ∞.
(E22)

With this ansatz, we now proceed to investigate how the
scaling exponents φ1, φ2, χ1, χ2 behave as functions of the
model parameters: α1, α2, β1, β2, γ , and η.

First, we note that the scaling exponents φ1, φ2, χ1, χ2

along with the model parameters α1, α2, β1, β2 should
be related to the exponents γ and δ = 1 + γ−1

η
of the de-

gree and strength power-law distributions. Indeed, given
the distribution of the latent parameter λ from Eq. (72)
and the κ scaling from the Eq. (E21), we find that κ is
distributed according to ρ(κ ) ∼ κ−(1+(α1−1)/φ1 ) for λ � λc,
and ρ(κ ) ∼ κ−(1+(α2−1)/φ2 ) for λ > λc. Similarly, using the
Eqs. (72) and (E22), the expected strength σ is distributed
according to ρ(σ ) ∼ σ−(1+(α1−1)/χ1 ) for λ � λc, and ρ(σ ) ∼
σ−(1+(α2−1)/χ2 ) for λ > λc. As we require that ρ(κ ) ∼ κ−γ and
ρ(σ ) ∼ σ−(1+(γ−1)/η), the model parameters should satisfy:

φ1 = (α1 − 1)/(γ − 1), (E23)

φ2 = (α2 − 1)/(γ − 1), (E24)

χ1 = ηφ1, (E25)

χ2 = ηφ2. (E26)

With these equations, we analyze how the scaling exponents
φ1, φ2, χ1, χ2 depend on the parameters of the model.

4. Analysis of the φ1 scaling exponent

We start by analyzing the scaling of κ ∼ λφ1 for the small
values of λ, i.e., λ � λc. While it is possible to get the scaling
of hypergeometric functions from Eqs. (E9) and (E10), we
note that the resulting scaling of κ as a function of λ is given
by the sum of λ terms raised to different powers. Moreover,
coefficients in front of these terms may change their signs
depending on the choice of the parameters α1, α2, β1, β2.
In general, for any combination of the model parameters, it is
impossible to approximate this sum of power terms as a single
power of λ, e.g., by extracting leading order terms.

To circumvent this issue, we find an approximation to the
φ1 scaling using the observations from the MLE inference
of the WSCM latent parameters introduced in Sec. IV. More
precisely, we first infer the nodes’ λ and μ parameters given
degree and strength sequences with predefined exponents γ

and η. Second, we obtain the estimate of the φ1 by linear fit-
ting of the κ (λ) function on the log-log scale. We observe that
for various input values of γ and η, the φ1 scaling exponent is
very close to η. We therefore assume that φ1 ≈ η, and, given
Eq. (E23), the α1 parameter is set to

α1 ≈ 1 + η(γ − 1). (E27)

5. Analysis of the χ1 scaling exponent

The approximated expression for the expected strength
σ (λ) in the small regime, i.e., λ � λc, is given by Eqs. (E17)
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and (E18). Although it is again possible to obtain σ (λ) scaling
in terms of series of various λ power-terms, it is hard to extract
a single power scaling that approximates the sum of these
power-terms for all parameters α1, α2, β1, β2. However, it is
possible to relate the χ1 scaling exponent to the β1 parameter
using the following considerations. From the MLE inference
of the WSCM latent parameters as in the case of the φ1 scal-
ing exponent, we observe that the resulting empirical model
parameter β1 is linearly related to the η − 1, and the coeffi-
cient between the two depends only on the input parameter
γ , i.e., β1 ≈ u(γ )(η − 1), where u(γ ) is a function of γ . By
numerical fitting, we find that u(γ ) behaves approximately as
u(γ ) ≈ (γ − γ−2

γ
). Thus

β1 ≈
(

γ − γ − 2

γ

)
(η − 1), (E28)

which yields β1(η + 1) ≈ (γ − (γ − 2)/γ )(η2 − 1), so that
η2 ≈ 1 + (η+1)β1

γ−(γ−2)/γ . Moreover, given Eq. (E25) and the fact
that φ1 may be approximated as φ1 ≈ η, the resulting ex-
ponent χ1 should be approximately equal to χ1 ≈ η2. This
means that χ1 ≈ 1 + (η+1)β1

γ−(γ−2)/γ .

6. Analysis of the φ2 scaling exponent

The scaling of κ (λ) ∼ λφ2 for large λ > λc is encoded
in the two integrals from Eqs. (E11) and (E12). The ap-
proximation in Eq. (E12) does not have any λ-dependent
terms, so it does not contribute to the scaling. We may
approximate the scaling of the hypergeometric functions
appearing in Eq. (E11) for λ → λc. In this case, the argu-
ment of the second hypergeometric function approaches −1,
therefore, the function approaches a constant and does not
contribute to the scaling. The first hypergeometric function
may be approximated as follows, assuming that its argument
is large:

2F1

(
1,

α1 − 1

1 + β1
, 1 + α1 − 1

1 + β1
,−ae2R

λ

)
≈ α1 − 1

α1 − 2 − β1

(
λ

ae2R

)

+ π (α1 − 1)

(1 + β1) sin
(

π (α1−1)
1+β1

)(
λ

ae2R

) α1−1
1+β1

. (E29)

Additionally, in the case when λ → ∞, the κ (λ) function
should saturate to the maximum possible degree n − 1, there-
fore, we only consider the κ (λ) scaling near the left boundary
of this regime, i.e., λc. The signs of the coefficients in front
of the two λ-dependent terms may be of different signs,
so it is again impossible to extract a single-exponent scal-
ing from the expression above. However, from the WSCM
MLE-inferred latent parameters as was done in the case of
φ1, χ1 scalings, we observe that for large values of η 	 1,
the scaling exponent φ2 → α1−1

1+β1
. We therefore seek a scal-

ing exponent φ2 in the form φ2 ≈ ψ (γ , η) α1−1
1+β1

. We know
that φ2 → 1 when η → 1 to be compatible with the un-
weighted HSCM, and we know that in this limit β1 → 0,
α1 → γ . Therefore there should be a prefactor of 1

γ−1 in front

of the α1−1
1+β1

to guarantee that φ2 → 1 in the HSCM limit.

Additionally, as φ2 → α1−1
1+β1

in the large η limit, we need
to compensate for this prefactor. Given these requirements,
we find from the numerical fitting procedure that the
following form of ψ (γ , η) fits well the φ2 exponent for vari-
ous γ , η parameters: ψ (γ , η) = 1

γ−1 [1 + (γ − 2)(1 − 1/η)].

Then the φ2 scaling exponent is: φ2 = α1−1
1+β1

1
γ−1 [1 + (γ −

2)(1 − 1/η)]. Therefore the model parameter α2 should be
selected as follows:

α2 ≈ 1 + α1 − 1

1 + β1
(1 + (γ − 2)(1 − 1/η)). (E30)

7. Analysis of the χ2 scaling exponent

The scaling of σ (λ) is given in Eq. (E19) and (E20). The
hypergeometric functions from Eq. (E19) will not contribute
to the scaling in the large λ limit, as their arguments would
approach −1, so we only expect to see an effect of these
functions near the left boundary of the region, λc. Conversely,
the hypergeometric function from Eq. (E20) is the main con-
tributor to the scaling for large λ. We note that we may not
neglect the behavior of the σ (λ) for large λ, as, in general,
strengths are not bounded for a weighted network, unlike
degrees that have to be at most n − 1. Using the large argu-
ment approximation for hypergeometric functions as before,
we obtain for Eq. (E20):

2F1

(
1,

α2 − 1

β2
, 1 + α2 − 1

β2
,−

(
λ

λc

)β2
)

≈ α2 − 1

α2 − 1 − β2

(
λ

λc

)−β2

+ π (α2 − 1)

β2 sin
(

π (α2−1)
β2

)(
λ

λc

)1−α2

.

(E31)

Given the λβ2 prefactor in Eq. (E20), we observe that the only
possible resulting scaling may be ∼λ1+β2−α2 . However, we
note that the large-argument approximation used above is only
valid for β1 > 0 and β2 > 0. Instead, when η → 1, we expect
to recover the unweighted HSCM behavior, effectively giving
us the same scaling for the χ2 as for the φ2 exponent. Thus, we
will set β2 to 0 in this limit, and use the above approximation
otherwise. This defines our choice for the β2 parameter:

β2 ≈
{

0, η = 1,

α2 − 1 + η(α2−1)
γ−1 , η > 1.

(E32)

8. Finding the (R, a) solution

As explained in Sec. V, we find the R, a parameters of
the WHSCM by numerically solving Eqs. (87) and (88) for
a fixed λ0. For the solver from our code package [49], we set
λ0 such that κ (λ0) = k̄. This is done to prevent the solver from
finding an (R, a) solution that corresponds to a low-degree
region (k < k̄) of the s̄(k) scaling curve that may not exhibit a
clean power-law scaling and distort the resulting baseline for
the strength-degree correlation curve. For each solver round,
we iteratively update the λ0 value corresponding to κ (λ0) = k̄
with the current solver’s guess of (R, a).
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APPENDIX F: Behavior of the WHSCM in the η → 1 limit

With the choice of model parameters above and set-
ting η = 1, we have the following distribution of the latent
parameter λ:

ρ(λ) = (α − 1)λ−α, (F1)

where λ ∈ (1,∞) and α = α1 = α2 = γ . This gives the ex-
pressions for κ (λ) and σ (λ):

κ (λ) = n
∫ ∞

1

(γ − 1)λ′−γ

1 + 2ae2R

λλ′
dλ′, (F2)

σ (λ) = n
∫ ∞

1

(γ − 1)λ′−γ

1 + 2ae2R

λλ′

1

2a
dλ′. (F3)

The integral for κ (λ) may be evaluated directly:

κ (λ) = n 2F1

(
1, γ − 1, γ ,−2ae2R

λ

)
. (F4)

This function scales linearly with λ for large enough ae2R 	
1, therefore, the expected degree κ (λ) ∼ λ. From the above
expressions, we also see that σ (λ) = 1

2aκ (λ). Thus, the con-
stant a may be easily found given the model input parameter
σ0, a = 1

2σ0
. Moreover, the average degree k̄ defined by

Eq. (87) now reads

k̄ = n(γ − 1)2�(−2ae2R, 2, γ − 1), (F5)

where �(z, q1, q2) is the Lerch transcendent function. These
equations allows to solve for the model parameter R numeri-
cally, given a target average degree k̄. The considered limiting
behavior is included as a special case in the code package for
generation of WHSCM networks [49].
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