Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/9795
Τίτλος: | Artificial neural network-based model for estimating the produced power ofaphotovoltaic module | Συγγραφείς: | Mellit, Adel Saǧlam, Şafak Kalogirou, Soteris A. |
Major Field of Science: | Natural Sciences | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | ANN;Forecasting;Modelling;Photovoltaic module;Produced power | Ημερομηνία Έκδοσης: | Δεκ-2013 | Πηγή: | Renewable Energy, 2013, vol. 60, pp. 71-78 | Volume: | 60 | Start page: | 71 | End page: | 78 | Περιοδικό: | Renewable Energy | Περίληψη: | In this paper, a methodology to estimate the profile of the produced power of a 50Wp Si-polycrystalline photovoltaic (PV) module is described. For this purpose, two artificial neural networks (ANNs) have been developed for use in cloudy and sunny days respectively. More than one year of measured data (solar irradiance, air temperature, PV module voltage and PV module current) have been recorded at the Marmara University, Istanbul, Turkey (from 1-1-2011 to 24-2-2012) and used for the training and validation of the models. Results confirm the ability of the developed ANN-models for estimating the power produced with reasonable accuracy. A comparative study shows that the ANN-models perform better than polynomial regression, multiple linear regression, analytical and one-diode models. The advantage of the ANN-models is that they do not need more parameters or complicate calculations unlike implicit models. The developed models could be used to forecast the profile of the produced power. Although, the methodology has been applied for one polycrystalline PV module, it could also be generalized for large-scale photovoltaic plants as well as for other PV technologies. | URI: | https://hdl.handle.net/20.500.14279/9795 | ISSN: | 09601481 | DOI: | 10.1016/j.renene.2013.04.011 | Rights: | © Elsevier | Type: | Article | Affiliation: | Jijel University Unité de Développement des Équipements Solaires Marmara University Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
172
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
20
147
Last Week
1
1
Last month
1
1
checked on 29 Οκτ 2023
Page view(s) 50
446
Last Week
0
0
Last month
1
1
checked on 4 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα