Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9795
DC FieldValueLanguage
dc.contributor.authorMellit, Adel-
dc.contributor.authorSaǧlam, Şafak-
dc.contributor.authorKalogirou, Soteris A.-
dc.date.accessioned2017-02-20T11:31:57Z-
dc.date.available2017-02-20T11:31:57Z-
dc.date.issued2013-12-
dc.identifier.citationRenewable Energy, 2013, vol. 60, pp. 71-78en_US
dc.identifier.issn09601481-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9795-
dc.description.abstractIn this paper, a methodology to estimate the profile of the produced power of a 50Wp Si-polycrystalline photovoltaic (PV) module is described. For this purpose, two artificial neural networks (ANNs) have been developed for use in cloudy and sunny days respectively. More than one year of measured data (solar irradiance, air temperature, PV module voltage and PV module current) have been recorded at the Marmara University, Istanbul, Turkey (from 1-1-2011 to 24-2-2012) and used for the training and validation of the models. Results confirm the ability of the developed ANN-models for estimating the power produced with reasonable accuracy. A comparative study shows that the ANN-models perform better than polynomial regression, multiple linear regression, analytical and one-diode models. The advantage of the ANN-models is that they do not need more parameters or complicate calculations unlike implicit models. The developed models could be used to forecast the profile of the produced power. Although, the methodology has been applied for one polycrystalline PV module, it could also be generalized for large-scale photovoltaic plants as well as for other PV technologies.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofRenewable Energyen_US
dc.rights© Elsevieren_US
dc.subjectANNen_US
dc.subjectForecastingen_US
dc.subjectModellingen_US
dc.subjectPhotovoltaic moduleen_US
dc.subjectProduced poweren_US
dc.titleArtificial neural network-based model for estimating the produced power ofaphotovoltaic moduleen_US
dc.typeArticleen_US
dc.collaborationJijel Universityen_US
dc.collaborationUnité de Développement des Équipements Solairesen_US
dc.collaborationMarmara Universityen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryAlgeriaen_US
dc.countryTurkeyen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.renene.2013.04.011en_US
dc.relation.volume60en_US
cut.common.academicyear2013-2014en_US
dc.identifier.spage71en_US
dc.identifier.epage78en_US
item.openairetypearticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn0960-1481-
crisitem.journal.publisherElsevier-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

172
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations 20

147
Last Week
1
Last month
1
checked on Oct 29, 2023

Page view(s) 50

446
Last Week
0
Last month
1
checked on Dec 4, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.