Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/9008
Τίτλος: Assessment of lidar depolarization uncertainty by means of a polarimetric lidar simulator
Συγγραφείς: Bravo-Aranda, Juan Antonio 
Belegante, Livio 
Freudenthaler, Volker 
Alados-Arboledas, Lucas 
Nicolae, Doina Nicoleta 
Granados-Munõz, María José 
Luis Guerrero-Rascado, J. L. 
Amodeo, Aldo 
D'Amico, Giusseppe 
Engelmann, R. 
Pappalardo, Gelsomina 
Kokkalis, Panayotis 
Mamouri, Rodanthi-Elisavet 
Papayannis, Alexandros D. 
Navas-Guzmán, Francisco 
José Olmo, Francisco 
Wandinger, Ulla 
Amato, Francesco 
Haeffelin, Martial 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Depolarization measurements;Spherical and non-spherical aerosol
Ημερομηνία Έκδοσης: 7-Οκτ-2016
Πηγή: Atmospheric Measurement Techniques, 2016, vol. 9, no. 10, pp. 4935-4953
Volume: 9
Issue: 10
Start page: 4935
End page: 4953
Project: ACTRIS PPP - Aerosols, Clouds and Trace gases Preparatory Phase Project 
Περιοδικό: Atmospheric Measurement Techniques 
Περίληψη: Lidar depolarization measurements distinguish between spherical and non-spherical aerosol particles based on the change of the polarization state between the emitted and received signal. The particle shape information in combination with other aerosol optical properties allows the characterization of different aerosol types and the retrieval of aerosol particle microphysical properties. Regarding the microphysical inversions, the lidar depolarization technique is becoming a key method since particle shape information can be used by algorithms based on spheres and spheroids, optimizing the retrieval procedure. Thus, the identification of the depolarization error sources and the quantification of their effects are crucial. This work presents a new tool to assess the systematic error of the volume linear depolarization ratio (δ), combining the Stokes-Müller formalism and the complete sampling of the error space using the lidar model presented in Freudenthaler (2016a). This tool is applied to a synthetic lidar system and to several EARLINET lidars with depolarization capabilities at 355 or 532 nm. The lidar systems show relative errors of δ larger than 100% for δ values around molecular linear depolarization ratios (∼ 0.004 and up to ∼ 10 % for δ = 0.45). However, one system shows only relative errors of 25 and 0.22% for δ = 0.004 and δ = 0.45, respectively, and gives an example of how a proper identification and reduction of the main error sources can drastically reduce the systematic errors of δ. In this regard, we provide some indications of how to reduce the systematic errors.
URI: https://hdl.handle.net/20.500.14279/9008
ISSN: 18678548
DOI: 10.5194/amt-9-4935-2016
Rights: © Copernicus
Type: Article
Affiliation: Andalusian Institute for Earth System Research (IISTA-CEAMA) 
University of Granada 
École Polytechnique 
National Institute of Research and Development for Optoelectronics 
Ludwig-Maximilians-Universität Meteorologisches Institut 
CNR - National Research Council of Italy 
Leibniz Institute for Tropospheric Research 
National Technical University Of Athens 
Cyprus University of Technology 
University of Bern 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Mamouri.pdfOpen access1.84 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

34
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations

31
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s)

550
Last Week
0
Last month
31
checked on 13 Μαρ 2025

Download(s) 20

201
checked on 13 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα