Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/9008
DC FieldValueLanguage
dc.contributor.authorBravo-Aranda, Juan Antonio-
dc.contributor.authorBelegante, Livio-
dc.contributor.authorFreudenthaler, Volker-
dc.contributor.authorAlados-Arboledas, Lucas-
dc.contributor.authorNicolae, Doina Nicoleta-
dc.contributor.authorGranados-Munõz, María José-
dc.contributor.authorLuis Guerrero-Rascado, J. L.-
dc.contributor.authorAmodeo, Aldo-
dc.contributor.authorD'Amico, Giusseppe-
dc.contributor.authorEngelmann, R.-
dc.contributor.authorPappalardo, Gelsomina-
dc.contributor.authorKokkalis, Panayotis-
dc.contributor.authorMamouri, Rodanthi-Elisavet-
dc.contributor.authorPapayannis, Alexandros D.-
dc.contributor.authorNavas-Guzmán, Francisco-
dc.contributor.authorJosé Olmo, Francisco-
dc.contributor.authorWandinger, Ulla-
dc.contributor.authorAmato, Francesco-
dc.contributor.authorHaeffelin, Martial-
dc.date.accessioned2017-01-12T07:39:39Z-
dc.date.available2017-01-12T07:39:39Z-
dc.date.issued2016-10-07-
dc.identifier.citationAtmospheric Measurement Techniques, 2016, vol. 9, no. 10, pp. 4935-4953en_US
dc.identifier.issn18678548-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/9008-
dc.description.abstractLidar depolarization measurements distinguish between spherical and non-spherical aerosol particles based on the change of the polarization state between the emitted and received signal. The particle shape information in combination with other aerosol optical properties allows the characterization of different aerosol types and the retrieval of aerosol particle microphysical properties. Regarding the microphysical inversions, the lidar depolarization technique is becoming a key method since particle shape information can be used by algorithms based on spheres and spheroids, optimizing the retrieval procedure. Thus, the identification of the depolarization error sources and the quantification of their effects are crucial. This work presents a new tool to assess the systematic error of the volume linear depolarization ratio (δ), combining the Stokes-Müller formalism and the complete sampling of the error space using the lidar model presented in Freudenthaler (2016a). This tool is applied to a synthetic lidar system and to several EARLINET lidars with depolarization capabilities at 355 or 532 nm. The lidar systems show relative errors of δ larger than 100% for δ values around molecular linear depolarization ratios (∼ 0.004 and up to ∼ 10 % for δ = 0.45). However, one system shows only relative errors of 25 and 0.22% for δ = 0.004 and δ = 0.45, respectively, and gives an example of how a proper identification and reduction of the main error sources can drastically reduce the systematic errors of δ. In this regard, we provide some indications of how to reduce the systematic errors.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relationACTRIS PPP - Aerosols, Clouds and Trace gases Preparatory Phase Projecten_US
dc.relation.ispartofAtmospheric Measurement Techniquesen_US
dc.rights© Copernicusen_US
dc.subjectDepolarization measurementsen_US
dc.subjectSpherical and non-spherical aerosolen_US
dc.titleAssessment of lidar depolarization uncertainty by means of a polarimetric lidar simulatoren_US
dc.typeArticleen_US
dc.collaborationAndalusian Institute for Earth System Research (IISTA-CEAMA)en_US
dc.collaborationUniversity of Granadaen_US
dc.collaborationÉcole Polytechniqueen_US
dc.collaborationNational Institute of Research and Development for Optoelectronicsen_US
dc.collaborationLudwig-Maximilians-Universität Meteorologisches Instituten_US
dc.collaborationCNR - National Research Council of Italyen_US
dc.collaborationLeibniz Institute for Tropospheric Researchen_US
dc.collaborationNational Technical University Of Athensen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationUniversity of Bernen_US
dc.subject.categoryCivil Engineeringen_US
dc.journalsOpen Accessen_US
dc.countrySpainen_US
dc.countryFranceen_US
dc.countryRomaniaen_US
dc.countryGermanyen_US
dc.countryItalyen_US
dc.countryGreeceen_US
dc.countryCyprusen_US
dc.countrySwitzerlanden_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.5194/amt-9-4935-2016en_US
dc.relation.issue10en_US
dc.relation.volume9en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage4935en_US
dc.identifier.epage4953en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.journal.journalissn1867-8548-
crisitem.journal.publisherCopernicus-
crisitem.project.funderEuropean Commission-
crisitem.project.grantno739530-
crisitem.project.fundingProgramH2020-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/739530-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0003-4836-8560-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
Files in This Item:
File Description SizeFormat
Mamouri.pdfOpen access1.84 MBAdobe PDFView/Open
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

34
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

31
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

550
Last Week
0
Last month
31
checked on Mar 13, 2025

Download(s) 20

201
checked on Mar 13, 2025

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.