Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30854
Τίτλος: Applying ant colony optimization to dynamic binary-encoded problems
Συγγραφείς: Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Algorithms;Ant colony optimization;Artificial intelligence;Combinatorial optimization;Optimization;Traveling salesman problem
Ημερομηνία Έκδοσης: 8-Απρ-2015
Πηγή: 18th European Conference on the Applications of Evolutionary Computation, EvoApplications 2015, Copenhagen, 8 - 10 April 2015
Volume: 9028
Conference: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 
Περίληψη: Ant colony optimization (ACO) algorithms have proved to be able to adapt to dynamic optimization problems (DOPs) when stagnation behaviour is addressed. Usually, permutation-encoded DOPs, e.g., dynamic travelling salesman problems, are addressed using ACO algorithms whereas binary-encoded DOPs, e.g., dynamic knapsack problems, are tackled by evolutionary algorithms (EAs). This is because of the initial developments of the introduced to address binary-encoded DOPs and compared with existing EAs. The experimental results show that ACO with an appropriate pheromone evaporation rate outperforms EAs in most dynamic test cases.
URI: https://hdl.handle.net/20.500.14279/30854
ISBN: 9783319165486
ISSN: 03029743
DOI: 10.1007/978-3-319-16549-3_68
Rights: © Springer International Publishing
Type: Conference Papers
Affiliation: De Montfort University 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

4
checked on 14 Μαρ 2024

Page view(s) 20

99
Last Week
1
Last month
0
checked on 24 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα