Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30854
DC FieldValueLanguage
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-24T10:55:35Z-
dc.date.available2023-11-24T10:55:35Z-
dc.date.issued2015-04-08-
dc.identifier.citation18th European Conference on the Applications of Evolutionary Computation, EvoApplications 2015, Copenhagen, 8 - 10 April 2015en_US
dc.identifier.isbn9783319165486-
dc.identifier.issn03029743-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30854-
dc.description.abstractAnt colony optimization (ACO) algorithms have proved to be able to adapt to dynamic optimization problems (DOPs) when stagnation behaviour is addressed. Usually, permutation-encoded DOPs, e.g., dynamic travelling salesman problems, are addressed using ACO algorithms whereas binary-encoded DOPs, e.g., dynamic knapsack problems, are tackled by evolutionary algorithms (EAs). This is because of the initial developments of the introduced to address binary-encoded DOPs and compared with existing EAs. The experimental results show that ACO with an appropriate pheromone evaporation rate outperforms EAs in most dynamic test cases.en_US
dc.language.isoenen_US
dc.rights© Springer International Publishingen_US
dc.subjectAlgorithmsen_US
dc.subjectAnt colony optimizationen_US
dc.subjectArtificial intelligenceen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectOptimizationen_US
dc.subjectTraveling salesman problemen_US
dc.titleApplying ant colony optimization to dynamic binary-encoded problemsen_US
dc.typeConference Papersen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.identifier.doi10.1007/978-3-319-16549-3_68en_US
dc.identifier.scopus2-s2.0-84925878490en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84925878490en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.volume9028en_US
cut.common.academicyear2015-2016en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

4
checked on Mar 14, 2024

Page view(s) 20

99
Last Week
1
Last month
0
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.