Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/30854
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mavrovouniotis, Michalis | - |
dc.contributor.author | Yang, Shengxiang | - |
dc.date.accessioned | 2023-11-24T10:55:35Z | - |
dc.date.available | 2023-11-24T10:55:35Z | - |
dc.date.issued | 2015-04-08 | - |
dc.identifier.citation | 18th European Conference on the Applications of Evolutionary Computation, EvoApplications 2015, Copenhagen, 8 - 10 April 2015 | en_US |
dc.identifier.isbn | 9783319165486 | - |
dc.identifier.issn | 03029743 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/30854 | - |
dc.description.abstract | Ant colony optimization (ACO) algorithms have proved to be able to adapt to dynamic optimization problems (DOPs) when stagnation behaviour is addressed. Usually, permutation-encoded DOPs, e.g., dynamic travelling salesman problems, are addressed using ACO algorithms whereas binary-encoded DOPs, e.g., dynamic knapsack problems, are tackled by evolutionary algorithms (EAs). This is because of the initial developments of the introduced to address binary-encoded DOPs and compared with existing EAs. The experimental results show that ACO with an appropriate pheromone evaporation rate outperforms EAs in most dynamic test cases. | en_US |
dc.language.iso | en | en_US |
dc.rights | © Springer International Publishing | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Ant colony optimization | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Combinatorial optimization | en_US |
dc.subject | Optimization | en_US |
dc.subject | Traveling salesman problem | en_US |
dc.title | Applying ant colony optimization to dynamic binary-encoded problems | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | De Montfort University | en_US |
dc.subject.category | Computer and Information Sciences | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Natural Sciences | en_US |
dc.relation.conference | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | en_US |
dc.identifier.doi | 10.1007/978-3-319-16549-3_68 | en_US |
dc.identifier.scopus | 2-s2.0-84925878490 | en |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84925878490 | en |
dc.contributor.orcid | #NODATA# | en |
dc.contributor.orcid | #NODATA# | en |
dc.relation.volume | 9028 | en_US |
cut.common.academicyear | 2015-2016 | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.openairetype | conferenceObject | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.orcid | 0000-0002-5281-4175 | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
20
4
checked on Mar 14, 2024
Page view(s) 20
99
Last Week
1
1
Last month
0
0
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.