Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30844
Τίτλος: An Adaptive Multipopulation Framework for Locating and Tracking Multiple Optima
Συγγραφείς: Li, Changhe 
Nguyen, Trung Thanh 
Yang, Ming 
Mavrovouniotis, Michalis 
Yang, Shengxiang 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Dynamic optimization;multimodal optimization;multipopulation optimization;population adaptation
Ημερομηνία Έκδοσης: 1-Αυγ-2016
Πηγή: IEEE Transactions on Evolutionary Computation, 2016, vol. 20, iss. 4, pp. 590 - 605
Volume: 20
Issue: 4
Start page: 590
End page: 605
Περιοδικό: IEEE Transactions on Evolutionary Computation 
Περίληψη: Multipopulation methods are effective in solving dynamic optimization problems. However, to efficiently track multiple optima, algorithm designers need to address a key issue: how to adapt the number of populations. In this paper, an adaptive multipopulation framework is proposed to address this issue. A database is designed to collect heuristic information of algorithm behavior changes. The number of populations is adjusted according to statistical information related to the current evolving status in the database and a heuristic value. Several other techniques are also introduced, including a heuristic clustering method, a population exclusion scheme, a population hibernation scheme, two movement schemes, and a peak hiding method. The particle swarm optimization and differential evolution algorithms are implemented into the framework, respectively. A set of multipopulation-based algorithms are chosen to compare with the proposed algorithms on the moving peaks benchmark using four different performance measures. The effect of the components of the framework is also investigated based on a set of multimodal problems in static environments. Experimental results show that the proposed algorithms outperform the other algorithms in most scenarios.
URI: https://hdl.handle.net/20.500.14279/30844
ISSN: 1089778X
DOI: 10.1109/TEVC.2015.2504383
Rights: © IEEE
Type: Article
Affiliation: China University of Geosciences 
Liverpool John Moores University 
De Montfort University 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

63
checked on 14 Μαρ 2024

Page view(s)

97
Last Week
0
Last month
2
checked on 7 Νοε 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα