Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30844
DC FieldValueLanguage
dc.contributor.authorLi, Changhe-
dc.contributor.authorNguyen, Trung Thanh-
dc.contributor.authorYang, Ming-
dc.contributor.authorMavrovouniotis, Michalis-
dc.contributor.authorYang, Shengxiang-
dc.date.accessioned2023-11-23T10:18:54Z-
dc.date.available2023-11-23T10:18:54Z-
dc.date.issued2016-08-01-
dc.identifier.citationIEEE Transactions on Evolutionary Computation, 2016, vol. 20, iss. 4, pp. 590 - 605en_US
dc.identifier.issn1089778X-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30844-
dc.description.abstractMultipopulation methods are effective in solving dynamic optimization problems. However, to efficiently track multiple optima, algorithm designers need to address a key issue: how to adapt the number of populations. In this paper, an adaptive multipopulation framework is proposed to address this issue. A database is designed to collect heuristic information of algorithm behavior changes. The number of populations is adjusted according to statistical information related to the current evolving status in the database and a heuristic value. Several other techniques are also introduced, including a heuristic clustering method, a population exclusion scheme, a population hibernation scheme, two movement schemes, and a peak hiding method. The particle swarm optimization and differential evolution algorithms are implemented into the framework, respectively. A set of multipopulation-based algorithms are chosen to compare with the proposed algorithms on the moving peaks benchmark using four different performance measures. The effect of the components of the framework is also investigated based on a set of multimodal problems in static environments. Experimental results show that the proposed algorithms outperform the other algorithms in most scenarios.en_US
dc.language.isoenen_US
dc.relation.ispartofIEEE Transactions on Evolutionary Computationen_US
dc.rights© IEEEen_US
dc.subjectDynamic optimizationen_US
dc.subjectmultimodal optimizationen_US
dc.subjectmultipopulation optimizationen_US
dc.subjectpopulation adaptationen_US
dc.titleAn Adaptive Multipopulation Framework for Locating and Tracking Multiple Optimaen_US
dc.typeArticleen_US
dc.collaborationChina University of Geosciencesen_US
dc.collaborationLiverpool John Moores Universityen_US
dc.collaborationDe Montfort Universityen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryChinaen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1109/TEVC.2015.2504383en_US
dc.identifier.scopus2-s2.0-84982799257en
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84982799257en
dc.contributor.orcid0000-0001-9222-0702en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.contributor.orcid#NODATA#en
dc.relation.issue4en_US
dc.relation.volume20en_US
cut.common.academicyear2016-2017en_US
dc.identifier.spage590en_US
dc.identifier.epage605en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
crisitem.author.orcid0000-0002-5281-4175-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

63
checked on Mar 14, 2024

Page view(s)

99
Last Week
0
Last month
4
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.