Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/30669
Τίτλος: | Effective and Efficient DDoS Attack Detection Using Deep Learning Algorithm, Multi-Layer Perceptron | Συγγραφείς: | Ahmed, Sheeraz Khan, Zahoor Ali Mohsin, Syed Muhammad Latif, Shahid Aslam, Sheraz Mujlid, Hana Adil, Muhammad Najam, Zeeshan |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | attack;attack detection;botnet;DDoS attack;MLP classifier | Ημερομηνία Έκδοσης: | 1-Φεβ-2023 | Πηγή: | Future Internet, 2023, vol. 15, iss. 2 | Volume: | 15 | Issue: | 2 | Περιοδικό: | Future Internet | Περίληψη: | Distributed denial of service (DDoS) attacks pose an increasing threat to businesses and government agencies. They harm internet businesses, limit access to information and services, and damage corporate brands. Attackers use application layer DDoS attacks that are not easily detectable because of impersonating authentic users. In this study, we address novel application layer DDoS attacks by analyzing the characteristics of incoming packets, including the size of HTTP frame packets, the number of Internet Protocol (IP) addresses sent, constant mappings of ports, and the number of IP addresses using proxy IP. We analyzed client behavior in public attacks using standard datasets, the CTU-13 dataset, real weblogs (dataset) from our organization, and experimentally created datasets from DDoS attack tools: Slow Lairs, Hulk, Golden Eyes, and Xerex. A multilayer perceptron (MLP), a deep learning algorithm, is used to evaluate the effectiveness of metrics-based attack detection. Simulation results show that the proposed MLP classification algorithm has an efficiency of 98.99% in detecting DDoS attacks. The performance of our proposed technique provided the lowest value of false positives of 2.11% compared to conventional classifiers, i.e., Naïve Bayes, Decision Stump, Logistic Model Tree, Naïve Bayes Updateable, Naïve Bayes Multinomial Text, AdaBoostM1, Attribute Selected Classifier, Iterative Classifier, and OneR. | URI: | https://hdl.handle.net/20.500.14279/30669 | ISSN: | 19995903 | DOI: | 10.3390/fi15020076 | Rights: | © by the authors Attribution-NonCommercial-NoDerivatives 4.0 International |
Type: | Article | Affiliation: | Iqra National University Higher Colleges of Technology COMSATS University Islamabad Virtual University of Pakistan Cyprus University of Technology Ctl Eurocollege Taif University Ultimate Engineering Consultants Private Limited |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
futureinternet-15-00076-v3 (4).pdf | Full text | 1.02 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
SCOPUSTM
Citations
11
checked on 14 Μαρ 2024
WEB OF SCIENCETM
Citations
1
checked on 27 Οκτ 2023
Page view(s)
200
Last Week
0
0
Last month
37
37
checked on 14 Μαρ 2025
Download(s)
204
checked on 14 Μαρ 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons