Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/29885
Τίτλος: Automatic Performance Tuning for Distributed Data Stream Processing Systems
Συγγραφείς: Herodotou, Herodotos 
Odysseos, Lambros 
Chen, Yuxing 
Lu, Jiaheng 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: data stream processing;Flink;parameter tuning;Spark Streaming;Storm
Ημερομηνία Έκδοσης: 9-Μαΐ-2022
Πηγή: 38th IEEE International Conference on Data Engineering, ICDE 2022Virtual, Kuala Lumpur, Malaysia, 9 - 12 May 2022
Start page: 3194
End page: 3197
Περιοδικό: Proceedings - International Conference on Data Engineering 
Περίληψη: Distributed data stream processing systems (DSPSs) such as Storm, Flink, and Spark Streaming are now routinely used to process continuous data streams in (near) real-time. However, achieving the low latency and high throughput demanded by today's streaming applications can be a daunting task, especially since the performance of DSPSs highly depends on a large number of system parameters that control load balancing, degree of parallelism, buffer sizes, and various other aspects of system execution. This tutorial offers a comprehensive review of the state-of-the-art automatic performance tuning approaches that have been proposed in recent years. The approaches are organized into five main categories based on their methodologies and features: cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. The categories of approaches will be analyzed in depth and compared to each other, exposing their various strengths and weaknesses. Finally, we will identify several open research problems and challenges related to automatic performance tuning for DSPSs.
URI: https://hdl.handle.net/20.500.14279/29885
ISBN: 9781665408837
ISSN: 10844627
DOI: 10.1109/ICDE53745.2022.00296
Rights: © Elsevier B.V.
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Tencent Inc. 
University of Helsinki 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

5
checked on 14 Μαρ 2024

Page view(s)

147
Last Week
0
Last month
4
checked on 23 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons