Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2471
Τίτλος: Development of a Neural Network-Based Fault Diagnostic System
Συγγραφείς: Kalogirou, Soteris A. 
Florides, Georgios A. 
Lalot, Sylvain 
Desmet, Bernard 
Major Field of Science: Engineering and Technology
Field Category: Environmental Engineering
Λέξεις-κλειδιά: Fault diagnostic system;Artificial Neural Networks (ANN);Solar water heating systems
Ημερομηνία Έκδοσης: Αυγ-2006
Πηγή: World Renewable Energy Congress IX, 2006, 19-25 August, Florence, Italy
Conference: World Renewable Energy Congress IX 
Περίληψη: The objective of this work is to present the development of an automatic solar water heater (SWH) fault diagnosis system (FDS). The FDS system consists of a prediction module, a residual calculator and the diagnosis module. A data acquisition system measures the temperatures at four locations of the SWH system. In the prediction module an artificial neural network (ANN) is used, trained with values obtained from a TRNSYS model of a fault-free system operated with the typical meteorological year (TMY) files of Nicosia, Cyprus and Paris, France. Thus, the neural network is able to predict the fault-free temperatures under different environmental conditions. The input data to the ANN are the time of the year, various weather parameters and one input temperature. The residual calculator receives both the current measurement data from the data acquisition system and the fault-free predictions from the prediction module. The system can predict three types of faults; collector faults and faults in insulation of the pipes connecting the collector with the storage tank and these are indicated with suitable labels. The system was validated by using input values representing various faults of the system.
URI: https://hdl.handle.net/20.500.14279/2471
Type: Conference Papers
Affiliation: Higher Technical Institute Cyprus 
University of Valenciennes and Hainaut-Cambresis 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
C83-ST160.pdf142.31 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s) 50

375
Last Week
0
Last month
1
checked on 4 Δεκ 2024

Download(s) 50

103
checked on 4 Δεκ 2024

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα