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ABSTRACT 
 
The objective of this work is to present the development of an automatic solar water heater (SWH) 
fault diagnosis system (FDS). The FDS system consists of a prediction module, a residual calculator 
and the diagnosis module. A data acquisition system measures the temperatures at four locations of 
the SWH system. In the prediction module an artificial neural network (ANN) is used, trained with 
values obtained from a TRNSYS model of a fault-free system operated with the typical 
meteorological year (TMY) files of Nicosia, Cyprus and Paris, France. Thus, the neural network is 
able to predict the fault-free temperatures under different environmental conditions. The input data 
to the ANN are the time of the year, various weather parameters and one input temperature. The 
residual calculator receives both the current measurement data from the data acquisition system and 
the fault-free predictions from the prediction module. The system can predict three types of faults; 
collector faults and faults in insulation of the pipes connecting the collector with the storage tank 
and these are indicated with suitable labels. The system was validated by using input values 
representing various faults of the system.  
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1. INTRODUCTION 
 
Solar water heating (SWH) systems are not 
usually equipped with any fault diagnostic 
system (FDS). Any faults are usually identified 
either by regular inspection by servicing 
personnel or when the system is not producing 
appropriate quantities of hot water, which is the 
most frequent. Usually people forget the 
existence of the solar system and this is 
inspected only after hot water is not available, 
indicating some problems. This results in 
problematic operation of the systems for long 
periods of time, which reduce the effectiveness 
and viability of the systems.  
 
2. DESCRIPTION OF SOLAR SYSTEM 
 
The solar system considered in this work is a 
large hot water one suitable for a small hotel, 
blocks of flats, offices or similar applications. 
Although the FDS system developed can be 
applied to small systems as well it is thought 
that the expenditure required would not balance 
the extra benefits incurred in such cases and in 
domestic applications the users are usually 

more sensitive to the maintenance of their own 
system in comparison with the maintenance 
staff of a hotel for example or the tenants of a 
multi building installation where everybody but 
really nobody is responsible. The system 
diagrammatic is shown in Fig. 1. The system 
consists of 40m2 of collectors, a differential 
thermostat (not shown in Fig. 1) and a 2000 
liters storage tank. The system is also equipped 
with a data acquisition system which measures 
the temperatures at four locations of the SWH 
system; the collector outlet (T1), the storage 
tank inlet (T2), the storage tank outlet (T3) and 
the collector inlet (T4).  
 
A TRNSYS model of the system predicts the 
four temperatures of a fault-free system 
operated with the typical meteorological year 
(TMY) files of Nicosia, Cyprus and Paris, 
France. It should be noted that the actual 
performance characteristics of a real system 
were used in TRNSYS. The data obtained from 
TRNSYS were used to train a number of 
artificial neural networks (ANNs). In an actual 
system, real fault-free data collected for a 
certain period of time can be used for training. 



 
Fig. 1 Schematic diagram of the simple solar 

system 
 
3. ANN MODELS 
 
Six ANNs, one for each temperature (T1, T2 
and T4) for each location, were trained to 
predict the required temperatures. The objective 
is to compare the ANNs predicted temperatures 
against measured temperatures from the data 
acquisition system and from any differences 
between the two to decide whether the system 
has any fault or if it is working normally. The 
neural networks are of the multiple perceptron 
type with three hidden layers; each with a 
different activation function, see [1-3] for 
details. For the training of the ANNs the 
TRNSYS results of a “fault-free” system were 
used. For Cyprus, 4377 data were available 
(sunshine data only) from which 3282 were 
used for the training and 1095 for the validation 
of the ANNs. Similarly, for France, 4364 data 
were available in total, from which 3273 were 
used for the training and 1091 for the validation 
of the ANN. Thus, the neural network is able to 
predict the fault-free temperatures under 
different environmental conditions. The ratio of 
the validation set size to the training set size is 
much higher than the one suggested in [4].  
 
The input data to the ANN are the time of the 
year (from 1 to 8760), global solar radiation on 
a horizontal surface, beam radiation, ambient 
temperature, incidence angle, wind speed, 
relative humidity, flow availability (0 for no 
flow or 1 for flow) and input temperature (Tin) 
according to the case, i.e., for the prediction of 
T1 temperature T4 was used as input, for T2 
temperature T1 is used as input and for T4 
temperature T3 is used as input. In the work 
presented here, T3 is not predicted, as this 
would require the mean storage tank 

temperature as an input. A single output is used 
representing the predicted temperature. A 
schematic diagram of the ANNs is shown in 
Fig. 2. It should be noted that a different ANN 
is used for each temperature and each location. 
 

 
Fig. 2 ANN design concept 

 
The results for the training and validation of the 
six ANNs are shown in Table 1. In all cases the 
results are considered as satisfactory. Even in 
the case of T2 where low R2 values were 
obtained, the ANN predictions were more than 
5% of the accepted value for no more than 4 
consecutive cases. 
 
Table 1. Coefficient of multiple determination 

(R2) for the training and validation of the ANNs 
ANN Country Prediction Training Validation

ANN-1 T1 0.9998 0.9996 
ANN-2 T2 0.9447 0.8823 
ANN-4

Cyprus
T4 0.9968 0.9920 

ANN-5 T1 0.9998 0.9995 
ANN-6 T2 0.9296 0.8258 
ANN-8

France
T4 0.9912 0.9661 

 
4. FAULT FINDING SYSTEM 
 
The concept of the fault finding system (FDS) 
is shown schematically in Fig. 3. In the 
prediction module the trained ANN modules 
were used to predict the required temperature. 
The residual calculator receives both the 
current measurement data from the data 
acquisition system and the fault-free predictions 
from the prediction module. The set of 
residuals rcol, rU12 and rU34 (see section 4.1, 
below), or differences between the current 
conditions of parameters and those predicted 
for fault-free operation (estimated by the 
ANN), are generated by this module.
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Fig. 3 Concept of the simple FDS 

 
In the diagnosis module the residuals are 
compared against three constant threshold 
values. So, four categories are defined: normal, 
low probability of failure, high probability of 
failure, and failure. The system can predict 
three types of faults; collector faults and faults 
in insulation of the pipes connecting the 
collector with the storage tank and these are 
indicated with suitable labels. It cannot 
however, identify the exact cause of the fault in 
the solar collector which can be due to dust 
deposited on the collector glazing, fouling in 
the collector or problems related to the collector 
insulation. 
 
4.1 The residual calculator 
 
As already mentioned, the residual calculator 
receives both the current measurement data 
from the data acquisition system and the fault-
free predictions from the prediction module. 
The latter are the values predicted by the neural 
networks presented above. In fact, the residuals 
are computed only if the pump is on. 
 
Two kinds of residuals are computed. The first 
is the absolute value of the relative error 
between the actual and the predicted difference 
of two temperatures and is used to monitor the 
condition of the collectors. This residual is 
given by Eq. (1) where the actual temperature 
increase T1a-T4a is compared against the 
predicted temperature increase T1p-T4a. 
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The second kind of residuals is the relative 
error of a temperature difference. It is used for 
monitoring the conditions of the connecting 
pipes between the collectors and the storage: 
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4.2 The diagnosis module 
 
The residuals are compared against four 
categories of faults; normal, low probability of 
failure, high probability of failure and failure. 
Each state of the system is decided from the 
magnitude of the residual, which classifies it to 
one of each category.  
 
To do so, three thresholds are determined. They 
depend on the quality of the predictions and the 
actual state of the system. When the neural 
networks are accurate and the system is 
operating without any fault, the thresholds are 
very low. When each measurement is received, 
the procedure described in Fig. 4 is applied. As 
can be seen in Fig. 4, five consecutive residuals 
are required in each category to determine the 
state of the system. This is used to avoid false 
indications or false alarms (in the case of 
failure of a sub-system) from possible wrong 
predictions from an ANN or wrong 
measurements from the data acquisition system, 
which often occur when there is noise in 
measurements. 
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Fig. 4 Procedure applied by the diagnosis module 

 
 
5. APPLICATION OF THE FDS 
 
The following experiments have been carried 
out using TRNSYS. The first one concerns the 
Cypriot solar system. Starting March 1st, the F' 
coefficient has been progressively decreased 
from 0.69 to 0.63 (10% decrease compared to 
the value taken into account during the training 
process of the neural networks) in seven weeks 
(0.69 the first week, 0.68 the second week and 
so on). Figure 5 shows the residuals rcol.  
 

 
Fig. 5 Plot of rcol residuals against functioning 

hour-Cypriot system 
 

The F’ coefficient, i.e., the collector efficiency 
factor, which represents for a drop of the 
collector efficiency and accounts for various 
faults, i.e., deterioration of collector insulation, 

fouling of the collector pipes, breaking of 
collector glazing, alteration in fluid flow rate, 
separation of riser pipes from the absorbing 
plates, etc. 
 
Then using 0.2, 0.35, and 0.5 as the three 
thresholds of the diagnosis module, the "raw" 
sequence shown in Fig. 6, is obtained. 
 

 
Fig. 6 Plot of the raw sequence against the 
functioning hour for the collector condition 

[Cypriot system] 
 
Taking into account the functioning periods 
(when pump is on), the detection of the failure 
happens during the 78th hour when F' is 0.67. 
This represents a 5% decrease of the normal 
value. Note that taking a decision when 5 
consecutive readings of either failure, low or 
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high probability of failure occur would have 
lead to the detection when F' is 0.68.  
 
The second experiment concerns the French 
system. The procedure is identical to the one 
presented for the Cypriot system, except that 
the starting date is June 1st.  
 
The analysis of the raw sequence (Fig. 7) of 
“normal”, “low probability”, “high probability” 
and “failure” leads to the detection of the 
failure during the 76th functioning hour, when 
F' is 0.67. Note that the thresholds are equal to 
the thresholds used for the analysis of the 
Cypriot system. 
 

 
Fig. 7 Plot of the raw sequence against the 
functioning hour for the collector condition 

[French system] 
 
Similar experiments have been carried out for 
the prediction of the deterioration of insulation 
of the connecting pipes. For the first one, an 
increase (by 10%) of the U value of the pipe 
connecting the outlet of the collectors to the 
storage (circuit 1-2) is simulated for the French 
system starting on July 1st. The analysis is 
carried out on the temperature difference 
between T1 and T2 when the pump is running. 
As already mentioned, the actual value of T1 is 
considered and the predicted value of T2 is used 
to compute the relative error. This makes the 
detection independent of a possible 
deterioration of the efficiency of the collectors. 
The detection of this failure during the 96th 
functioning hour (see Fig. 8) corresponds to 
about a 5% increase of the U value, when 0.01, 
0.015, and 0.02 are the three thresholds. 

 
Fig. 8 Plot of the raw sequence against the 

functioning hour for circuit 1-2 (rU12 residuals)  
[French system] 

 
The last experiment concerns the U value for 
the connecting pipe between the storage and the 
inlet of the collectors (circuit 3-4). The 
experiment begins on March 1st for the Cypriot 
system. Once again the analysis of the states 
sequence leads to the detection of the failure of 
the insulation when a 5% increase of the U 
value is observed (during the 69th functioning 
hour). Figure 9 shows the residuals versus the 
functioning time whereas Fig. 10 shows the 
corresponding sequence used for detection. In 
this case, the thresholds have to be adjusted to 
0.04, 0.06, and 0.08. It should be noted that due 
to lack of space only one circuit is presented for 
each location. 
 

 
Fig. 9 Plot of rU34 residuals against functioning 

hour-Cypriot system 
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As can be seen, the residuals are not 
continuously increasing. Therefore, for other 
more complex systems, systems located in 
other regions/countries, or maybe larger or 
smaller systems, the residuals would not evolve 
as they do here therefore it could be necessary 
to use a more complex monitoring tool such as 
the one presented in [5] or its derivative version 
presented in [6, 7]. 
 

 
Fig. 10 Plot of the raw sequence against the 

functioning hour for circuit 3-4 (rU34 residuals) 
[Cypriot system] 

 
6. CONCLUSIONS 
 
In this paper, the design of a solar system fault 
diagnostic system is presented. The system 
consists of a prediction module, a residual 
calculator and the diagnosis module. A data 
acquisition system measures the temperatures at 
four locations of the SWH system. In the 
prediction module an ANN is used, trained with 
values obtained from a TRNSYS model of a 
fault-free system for Nicosia and Paris. Thus, 
the neural network is able to predict the fault-
free temperatures under different environmental 
conditions. The input data to the ANN are the 
time of the year, various weather parameters 
and one input temperature. The residual 
calculator receives both the current 
measurement data from the data acquisition 
system and the fault-free predictions from the 
prediction module. The system can predict 
three types of faults; collector faults and faults 
in insulation of the pipes connecting the 
collector with the storage tank. 
 
The system was validated by using input values 
representing various faults of the system. In all 

cases, the faulty operation was predicted 
satisfactorily. In a future research, we are 
planning to develop a system, which will be 
able to identify the exact cause of each fault.  
 
It is believed by the authors that solar FDS can 
increase the reliability of the systems and thus 
the economic benefits resulting by their use. 
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