Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/2471
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorKalogirou, Soteris A.-
dc.contributor.authorFlorides, Georgios A.-
dc.contributor.authorLalot, Sylvain-
dc.contributor.authorDesmet, Bernard-
dc.date.accessioned2009-07-22T09:05:55Zen
dc.date.accessioned2013-05-17T05:30:01Z-
dc.date.accessioned2015-12-02T11:26:33Z-
dc.date.available2009-07-22T09:05:55Zen
dc.date.available2013-05-17T05:30:01Z-
dc.date.available2015-12-02T11:26:33Z-
dc.date.issued2006-08-
dc.identifier.citationWorld Renewable Energy Congress IX, 2006, 19-25 August, Florence, Italyen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/2471-
dc.description.abstractThe objective of this work is to present the development of an automatic solar water heater (SWH) fault diagnosis system (FDS). The FDS system consists of a prediction module, a residual calculator and the diagnosis module. A data acquisition system measures the temperatures at four locations of the SWH system. In the prediction module an artificial neural network (ANN) is used, trained with values obtained from a TRNSYS model of a fault-free system operated with the typical meteorological year (TMY) files of Nicosia, Cyprus and Paris, France. Thus, the neural network is able to predict the fault-free temperatures under different environmental conditions. The input data to the ANN are the time of the year, various weather parameters and one input temperature. The residual calculator receives both the current measurement data from the data acquisition system and the fault-free predictions from the prediction module. The system can predict three types of faults; collector faults and faults in insulation of the pipes connecting the collector with the storage tank and these are indicated with suitable labels. The system was validated by using input values representing various faults of the system.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.subjectFault diagnostic systemen_US
dc.subjectArtificial Neural Networks (ANN)en_US
dc.subjectSolar water heating systemsen_US
dc.titleDevelopment of a Neural Network-Based Fault Diagnostic Systemen_US
dc.typeConference Papersen_US
dc.collaborationHigher Technical Institute Cyprusen_US
dc.collaborationUniversity of Valenciennes and Hainaut-Cambresisen_US
dc.subject.categoryEnvironmental Engineeringen_US
dc.countryCyprusen_US
dc.countryFranceen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceWorld Renewable Energy Congress IXen_US
dc.dept.handle123456789/54en
cut.common.academicyear2005-2006en_US
item.openairetypeconferenceObject-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4497-0602-
crisitem.author.orcid0000-0001-9079-1907-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
C83-ST160.pdf142.31 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

Page view(s) 50

375
Last Week
0
Last month
1
checked on 4 Δεκ 2024

Download(s) 50

103
checked on 4 Δεκ 2024

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα