Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/2471
Πεδίο DC | Τιμή | Γλώσσα |
---|---|---|
dc.contributor.author | Kalogirou, Soteris A. | - |
dc.contributor.author | Florides, Georgios A. | - |
dc.contributor.author | Lalot, Sylvain | - |
dc.contributor.author | Desmet, Bernard | - |
dc.date.accessioned | 2009-07-22T09:05:55Z | en |
dc.date.accessioned | 2013-05-17T05:30:01Z | - |
dc.date.accessioned | 2015-12-02T11:26:33Z | - |
dc.date.available | 2009-07-22T09:05:55Z | en |
dc.date.available | 2013-05-17T05:30:01Z | - |
dc.date.available | 2015-12-02T11:26:33Z | - |
dc.date.issued | 2006-08 | - |
dc.identifier.citation | World Renewable Energy Congress IX, 2006, 19-25 August, Florence, Italy | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/2471 | - |
dc.description.abstract | The objective of this work is to present the development of an automatic solar water heater (SWH) fault diagnosis system (FDS). The FDS system consists of a prediction module, a residual calculator and the diagnosis module. A data acquisition system measures the temperatures at four locations of the SWH system. In the prediction module an artificial neural network (ANN) is used, trained with values obtained from a TRNSYS model of a fault-free system operated with the typical meteorological year (TMY) files of Nicosia, Cyprus and Paris, France. Thus, the neural network is able to predict the fault-free temperatures under different environmental conditions. The input data to the ANN are the time of the year, various weather parameters and one input temperature. The residual calculator receives both the current measurement data from the data acquisition system and the fault-free predictions from the prediction module. The system can predict three types of faults; collector faults and faults in insulation of the pipes connecting the collector with the storage tank and these are indicated with suitable labels. The system was validated by using input values representing various faults of the system. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.subject | Fault diagnostic system | en_US |
dc.subject | Artificial Neural Networks (ANN) | en_US |
dc.subject | Solar water heating systems | en_US |
dc.title | Development of a Neural Network-Based Fault Diagnostic System | en_US |
dc.type | Conference Papers | en_US |
dc.collaboration | Higher Technical Institute Cyprus | en_US |
dc.collaboration | University of Valenciennes and Hainaut-Cambresis | en_US |
dc.subject.category | Environmental Engineering | en_US |
dc.country | Cyprus | en_US |
dc.country | France | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.relation.conference | World Renewable Energy Congress IX | en_US |
dc.dept.handle | 123456789/54 | en |
cut.common.academicyear | 2005-2006 | en_US |
item.openairetype | conferenceObject | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_c94f | - |
item.languageiso639-1 | en | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | Department of Mechanical Engineering and Materials Science and Engineering | - |
crisitem.author.dept | Department of Mechanical Engineering and Materials Science and Engineering | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4497-0602 | - |
crisitem.author.orcid | 0000-0001-9079-1907 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
C83-ST160.pdf | 142.31 kB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s) 50
375
Last Week
0
0
Last month
1
1
checked on 4 Δεκ 2024
Download(s) 50
103
checked on 4 Δεκ 2024
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα