Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22946
Τίτλος: Identification of significative lidar metrics and comparison of machine learning approaches for estimating stand and diversity variables in heterogeneous brazilian atlantic forest
Συγγραφείς: Martins-Neto, Rorai Pereira 
Tommaselli, Antonio Maria Garcia 
Imai, Nilton Nobuhiro 
David, Hassan Camil 
Miltiadou, Milto 
Honkavaara, Eija 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Tropical forests;Airborne laser scanning;Forest structure;Forest attributes;Artificial intelligence;Machine learning;Multiple linear regression;Random forest;Support vector machine;Neural network
Ημερομηνία Έκδοσης: 1-Ιου-2021
Πηγή: Remote Sensing, 2021, vol. 13, no. 13, articl. no. 2444
Volume: 13
Issue: 13
Περιοδικό: Remote Sensing 
Περίληψη: Data collection and estimation of variables that describe the structure of tropical forests, diversity, and richness of tree species are challenging tasks. Light detection and ranging (LiDAR) is a powerful technique due to its ability to penetrate small openings and cracks in the forest canopy, enabling the collection of structural information in complex forests. Our objective was to identify the most significant LiDAR metrics and machine learning techniques to estimate the stand and diversity variables in a disturbed heterogeneous tropical forest. Data were collected in a remnant of the Brazilian Atlantic Forest with different successional stages. LiDAR metrics were used in three types of transformation: (i) raw data (untransformed), (ii) correlation analysis, and (iii) principal component analysis (PCA). These transformations were tested with four machine learning techniques: (i) artificial neural network (ANN), ordinary least squares (OLS), random forests (RF), and support vector machine (SVM) with different configurations resulting in 27 combinations. The best technique was determined based on the lowest RMSE (%) and corrected Akaike information criterion (AICc), and bias (%) values close to zero. The output forest variables were mean diameter at breast height (MDBH), quadratic mean diameter (QMD), basal area (BA), density (DEN), number of tree species (NTS), as well as Shannon–Waver (H’) and Simpson’s diversity indices (D). The best input data were the new variables obtained from the PCA, and the best modeling method was ANN with two hidden layers for the variables MDBH, QMD, BA, and DEN while for NTS, H’and D, the ANN with three hidden layers were the best methods. For MDBH, QMD, H’and D, the RMSE was 5.2–10% with a bias between −1.7% and 3.6%. The BA, DEN, and NTS were the most difficult variables to estimate, due to their complexity in tropical forests; the RMSE was 16.2–27.6% and the bias between −12.4% and −0.24%. The results showed that it is possible to estimate the stand and diversity variables in heterogeneous forests with LiDAR data.
URI: https://hdl.handle.net/20.500.14279/22946
ISSN: 20724292
DOI: 10.3390/rs13132444
Rights: © by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: São Paulo State University 
Federal Rural University of Amazonia 
ERATOSTHENES Centre of Excellence 
Cyprus University of Technology 
National Land Survey of Finland 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
remotesensing-13-02444.pdfFulltext4.83 MBAdobe PDFΔείτε/ Ανοίξτε
remotesensing-1251873-supplementary.pdfSupplementary205.65 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

8
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

8
Last Week
1
Last month
0
checked on 29 Οκτ 2023

Page view(s)

264
Last Week
2
Last month
2
checked on 21 Νοε 2024

Download(s)

272
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons