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Abstract: Data collection and estimation of variables that describe the structure of tropical forests,
diversity, and richness of tree species are challenging tasks. Light detection and ranging (LiDAR) is
a powerful technique due to its ability to penetrate small openings and cracks in the forest canopy,
enabling the collection of structural information in complex forests. Our objective was to identify
the most significant LiDAR metrics and machine learning techniques to estimate the stand and
diversity variables in a disturbed heterogeneous tropical forest. Data were collected in a remnant of
the Brazilian Atlantic Forest with different successional stages. LiDAR metrics were used in three
types of transformation: (i) raw data (untransformed), (ii) correlation analysis, and (iii) principal
component analysis (PCA). These transformations were tested with four machine learning techniques:
(i) artificial neural network (ANN), ordinary least squares (OLS), random forests (RF), and support
vector machine (SVM) with different configurations resulting in 27 combinations. The best technique
was determined based on the lowest RMSE (%) and corrected Akaike information criterion (AICc),
and bias (%) values close to zero. The output forest variables were mean diameter at breast height
(MDBH), quadratic mean diameter (QMD), basal area (BA), density (DEN), number of tree species
(NTS), as well as Shannon–Waver (H’) and Simpson’s diversity indices (D). The best input data were
the new variables obtained from the PCA, and the best modeling method was ANN with two hidden
layers for the variables MDBH, QMD, BA, and DEN while for NTS, H’and D, the ANN with three
hidden layers were the best methods. For MDBH, QMD, H’and D, the RMSE was 5.2–10% with a
bias between −1.7% and 3.6%. The BA, DEN, and NTS were the most difficult variables to estimate,
due to their complexity in tropical forests; the RMSE was 16.2–27.6% and the bias between −12.4%
and −0.24%. The results showed that it is possible to estimate the stand and diversity variables in
heterogeneous forests with LiDAR data.

Keywords: tropical forests; airborne laser scanning; forest structure; forest attributes; artificial
intelligence; machine learning; multiple linear regression; random forest; support vector machine;
neural network

1. Introduction

Field surveys in the Brazilian tropical forests (e.g., Atlantic forest) are laborious work.
The high understory density, presence of lianas and vines, and aerial roots existent in this
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environment result in difficulties for the measurement of tree variables and a walk through
the forest. Estimating variables that describe the forest structure, the tree species diversity,
and richness are challenging tasks, because the Brazilian Atlantic forest is a very rich biome
in plant species, with approximately 14,000 vascular plant species, of which approximately
8000 are classified as endemic [1]. Additionally, measuring the canopy area and tree heights
is troublesome because of the variation in tree height and overlapping of tree crowns. Due
to these restrictions, tree height is usually estimated with the naked eye [2]. These data are
often used as inputs for regression models to estimate biomass, volume, growth, and yield,
but uncertainties in the field variables measurement propagate to the estimates through
regression models [3,4].

Data from airborne laser scanner (ALS) have been widely used in forestry applications,
due to their ability to penetrate through small openings (e.g., gaps between branches and
leaves) in the forest canopy and collect three-dimensional information of vegetation and
terrain [5–7]. ALS is based on light detection and ranging (LiDAR) technology, and with the
resulting three-dimensional point cloud, it is possible to better understand the arrangement
of the forest canopy, allowing the accurate estimation of structural parameters of the
forest [8]. The information acquired by ALS is very valuable for forest inventory and
modeling, especially for dense, complex forests that are not safe and/or easy to access.

It is possible to extract several metrics from the ALS point cloud. This includes
descriptive statistics, percentiles, and distribution measures of heights, intensity, and laser
pulse returns, providing a summary of the forest canopy structure. LiDAR metrics are
usually used as predictors in regression models for the estimation of forest biophysical
variables [9–11]. Multiple linear regression is commonly used for modeling forest variables
from LiDAR metrics due to its simplicity and clarity when interpreting the resulting
model [12].

However, multiple linear regression requires the basic assumptions of classical statis-
tics, which can be difficult to achieve when dealing with the modeling of biological data [13].
As a result, the use of computational techniques, such as machine learning, has been in-
creased, including modeling forest inventory variables with LiDAR metrics as predictors.
Machine learning techniques can model complex relationships between dependent and
independent variables (i.e., a large number of LiDAR metrics) without requiring linear
assumptions about the data distribution [13,14]. Therefore, machine learning techniques
are suitable for predicting complex non-linear relationships. Additionally, interaction
effects are modeled automatically which makes these methods very powerful and promis-
ing compared to multiple linear regression to estimate forest parameters from LiDAR
data [13,15].

The use of LiDAR metrics to estimate forest variables using machine learning tech-
niques has been used in forest plantations in Brazil. The estimate of total, commercial, and
pulp volume of a Pinus taeda plantation was performed by Silva et al. [16] using LiDAR
metrics as input data for the random forest (RF) algorithm. The results obtained indicated
a low bias prediction (average of −0.2%) and the average of the root-mean-square error
(RMSE) was 8.1%. The authors concluded the use of RF to determine different types of
volumes in homogeneous forests presents highly accurate estimates. In Eucalyptus spp.
plantations, Görgens et al. [17] estimated volume per stand comparing multiple linear
regression with artificial neural network (ANN), RF, and support vector machine (SVM)
regression methods. The results obtained reached high accuracy, with R2 close to 0.90
and with bias tending to zero. Among the tested machine learning methods, RF was
slightly better than the other methods and its results were similar to the results obtained
with multiple linear regression. The assessment of ANN, k nearest neighbors, and RF for
modeling trunk shape and volume in black wattle plantation, [18] showed that ANN and
RF presented the best results, with RMSE of 8% and 8.4%, respectively, against the RMSE
of 9.15% for the polynomial model. The authors concluded that the machine learning
techniques are appropriate for forest modeling, however, their use should be cautious
because of the greater possibility of overtraining and overfitting.
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Regarding native Brazilian forests, the combination of LiDAR metrics and machine
learning techniques is mainly focused on the Amazonian forest to estimate the aboveground
biomass. In low-intensity logging areas, [19] estimated the aboveground biomass (AGB)
stock by comparing multiple linear regression with some machine learning approaches.
Linear regression was the most appropriate method for the case study, with an RMSE of
19.7%, slightly better than the methods of RF, ANN, and SVM with a RMSE of 22.8% for the
three methods. However, the results demonstrate the potential for predicting AGB when
a non-parametric method is required mainly in tropical forests, due to its great diversity
and heterogeneity.

Nevertheless, there are other biomes in Brazil with high richness and species diversity
such as the Atlantic Forest. This is the second-largest rainforest in America, which occurs
mainly along the coast, extending far inland in some areas of south and southeastern
Brazil [20], whose composition, structure, and diversity remain mostly unknown. Due
to the occupation of the national territory that mainly occurs along the coast and other
anthropogenic activities (e.g., logging, disordered urban growth, agricultural encroach-
ment, and industrialization), the Atlantic Forest is the most degraded biome in Brazil.
It is approximated that only 11.6% of its original cover still remains, and these are very
fragmented [21–23]. However, this biome is a biodiversity hotspot because it has already
lost more than 75% of its original cover, with very high fragmentation, the remaining forest
fragments of this biome have a high species endemism [24,25].

The semideciduous seasonal forest, also known as inland Atlantic Forest because of
the inland location, is one of the phytophysiognomies and associated ecosystems defining
and forming the Atlantic forest, as described by [26]. Despite the importance of this
native forest, it is often neglected, resulting in a lack of information about its composition,
structure, and diversity [27].

The lack of studies using LiDAR metrics in the Brazilian Atlantic Forest and their
potential for estimating variables describing the forest structure was the motivation for
this work. The main objective is to compare four machine learning approaches (ANN,
ordinary least-squares multiple regression (OLS), RF, and SVM) with different numbers
of LiDAR metrics as input data, to estimate seven stand and diversity variables: mean
diameter at breast height (MDBH), quadratic mean diameter (QMD), basal area (BA),
density (DEN), number of tree species (NTS), Shannon–Waver diversity index (H’), and
Simpson diversity index (D). An area-based approach was considered more applicable
than individual tree-based techniques due to the difficulty of extracting individual trees in
the tropical forest [28,29].

An extensive experimental assessment was made, combining the three input types of
LiDAR metrics with the different regression methods tested with different architectures, to
estimate the stand and diversity forest variables cited. The results obtained in this study
may contribute to finding the best combination of a selection of metrics to deal with and a
machine learning technique to estimate forest variables in an inland Atlantic Forest.

2. Materials and Methods
2.1. Field Survey

The study was carried out in a remnant of inland Atlantic Forest, named Ponte Branca
(White Bridge), located in the west of São Paulo State, Brazil. Its size is approximately
13 km2 (Figure 1). As described by Berveglieri et al. [30], this forest remnant has suffered
from disturbances over time like selective logging and forest fires. However, there are still
areas at a good conservation state. Different successional stages are found from pioneer
formations to advanced regeneration stages with late secondary and climax species in the
upper canopy. The understory is dominated by the Myrtaceae family, mainly by the Eugenia
uniflora species, and with a high occurrence of Dendropanax cuneatus. In the upper canopy
the species Aspidosperma spp., Copaifera langsdorffii, and Hymenaea courbaril are found.
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Figure 1. Location of the study area and the canopy height model representing the tree heights inside
the Ponte Branca forest remnant.

Field data were collected in seven square plots of 40 m × 40 m and eight rectangular
plots with dimensions of 80 m × 20 m. This sums up to a total of 15 plots with an area
of 1600 m2 each (Figure 1). Plots 8 to Plot 15 have different dimensions due to greater
observed heterogeneity in successional stages found in each plot. As a result, rectangular
plots better represent the differences in these areas. The allocation of each plot was based on
the previous interpretation of historical and recent aerial images and on the management
plan provided by the environmental agency responsible for the study area, in such a way
that the plots covered all successional stages present in the Ponte Branca forest remnant.
In [30,31], a detailed description of the successional stages in the study area is presented.
The sampling area was 0.2% of the total forested area. The four corner positions of each
plot were obtained by a dual-frequency Global Navigation Satellite System receiver with,
at least, one-hour tracking, achieving an estimated precision of approximately 50 cm. The
area did not have continuous inventory data due to the restricted accessibility caused by
the high density of trees, and vines within the forest remnant. Despite the accessibility
limitations, it was possible to survey a sample of plots for this study.

All trees with DBH (Diameter at Breast Height) above 3.5 cm were counted, individu-
ally measured, and their tree species were identified. From the measured DBH the variables
MDBH (cm), QMD (cm), and BA (m2 ha−1) were calculated. From the tree counting, DEN
(trees ha−1) was obtained, and from the cataloged species, the total number of tree species
per plot (NTS) was calculated. The Shannon–Weaver diversity index, H’ (Equation (1)) [32],
and the Simpson index D (Equation (2)) [33], were also calculated to understand species
composition and diversity. A summary of the seven variables obtained in the field is shown
in Table 1, and the statistics of the variables for each of the 15 surveyed plots are presented
in the Supplementary Materials (Table S1).

H′ = −
S

∑
i=1

pi ln pi (1)
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where H′ is the Shannon–Weaver diversity index, S is the total number of species sampled
and pi is the ratio of the number of individual trees sampled from the ith species to the
total number of individual trees.

D = 1− ∑ ni(ni − 1)
N(N − 1)

(2)

where D is the Simpson index, n is the number of individual trees of the ith species and N
is the total number of individual trees.

Table 1. Statistics about forest variables calculated from field data.

Field
Variables Minimum Maximum Mean Standard

Deviation
Coefficient of

Variation (%) 1

MDBH 8.5 13.9 10.6 1.4 13.4
QMD 9.8 18.8 13.2 2.3 17.4

BA 5.6 30.7 16.2 7.5 46.2
DEN 380 2286 1193 569.4 47.7
NTS 10 24 15 3.8 25.9
H’ 1.18 2.04 1.56 0.21 13.6
D 0.49 0.79 0.67 0.08 11.9

1 Coefficient of variation (%) calculated by the ratio of the standard deviation to the average multiplied by 100. Field
variables: mean diameter at breast height (MDBH), quadratic mean diameter (QMD), basal area (BA), density (DEN),
number of tree species (NTS), Shannon–Waver diversity index (H’), and Simpson diversity index (D).

2.2. LiDAR Data Collection

The LiDAR data covering the study area was acquired in October 2017. The airborne
laser scanner used was a RIEGL LMS-Q680i, which is a full-waveform LiDAR sensor with a
scan angle range of ±30◦. The waveforms were processed in post-processing mode and the
point cloud was the peak returns of the waveforms that were delivered in discrete LiDAR
file formats. Up to 5 returns per emitted pulse were recorded, which is allowed according
to the specifications of the .las file [34]. This scanner model uses the multiple time around
(MTA) technique due to the high frequency of repetition (up to 400,000 Hz), being able
to acquire echoes arriving after a delay of more than one pulse repetition interval, thus
allowing measurements with a range beyond the maximum unambiguous measurement
range [35].

The flight height of the LiDAR survey used in the study was 900 m. The LiDAR data
was delivered in 16 flight lines acquired in the northeast-southwest direction, and covering
the entire Ponte Branca forest remnant. The average sampling density was 19.8 pulses
per m2. Figure 2 depicts the ALS point cloud of a plot of the study area, showing a sample
of the vertical structure of the forest.

2.3. LiDAR Data Processing

For LiDAR data processing, LAStools [36] and R environment [37] have been uti-
lized, to obtain area-based metrics from the point clouds. First, with LAStools [36], the
classification of the point cloud into ground and nonground points was performed. Sev-
eral parameters were empirically assessed to achieve suitable results, mainly ensuring
that ground points always existed within the selected search window, since in tropical
forests there is a dense understory, and ground points are sometimes not acquired by
LiDAR systems.
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Figure 2. Airborne laser scanner (ALS) point cloud representing the vertical structure of a plot of the
Ponte Branca forest remnant. (a) Three-dimensional view of the plot. (b) Cross-section of the same plot.

The following processing steps were performed in the R environment [37] using
the LidR package [38]. The main aim was to extract LiDAR metrics, not only related to
elevation and pulse returns, but also to intensity metrics, to understand their relationship
in estimating forest variables. However, the distance between the sensor and the target
is not constant during the survey, due to the variations of the platform (aircraft), the
terrain topography [39–42], and the scan angle. These variations in the distances and
atmospheric attenuation change the intensity recorded by the sensor [40,43,44]. Even with
these variations, some authors used raw intensities [45–47]. However, to achieve more
accurate results, the use of intensity metrics requires a priori correction also known as
normalization. In this study, we used a range correction model (Equation (3)) developed
by [40,43], which is based on the distance traveled from the sensor beam to the target is not
the same [42].

Inorm = Iobs

(
Ract

Rre f

) f

(3)

where Inorm is the normalized intensity, Iobs is the observed intensity, Ract is the distance
between the laser instrument and the returns, Rre f is an arbitrary reference distance,
f represents the rate of energy attenuation sustained by the pulse as it travels through a
medium back and forth from a target.

To calculate the Ract parameter for each return, it was necessary to determine the
location of the sensor, which was performed using a method proposed by [42], which is an
adaptation of the methodology developed by [43]. The main idea is that a pair of very close
pulses on different flight lines, assuming they reach the same object, must have the same
intensity. If there is a difference it would be indicative of a difference of range [42]. Thus,
the sensor’s position was determined by linear interpolation from the two closest points
in the aircraft’s trajectory positions, then the range for each return was determined as the
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Euclidean distance from the point to the sensor [42,43]. To apply this method, the values of
’gpstime’, ’ReturnNumber’, ’NumberOfReturns’, and ’PointSourceID’ are necessary [38],
which are not always made available by the data provider, making normalization of
intensity unviable [40–43]. Our data had all these values, so it was possible to proceed with
the intensity normalization.

We use the arbitrary reference distance as the flight height, that is, 900 m. In forest
areas, the optimum value of the exponent f should be between 2.1–2.5 [43], but for practical
purposes, the values between 2.2 to 2.4 are the most suitable, according to [42]. We made
some preliminary experiments and the value of 2.3 was the best choice for our area of study.
After this procedure, the result was a point cloud with corrected (or normalized) intensity
values, with which it was possible to extract intensity metrics and to use them as predictor
variables. The Riegl LMS-Q680i instrument records pulses with an intensity of 16 bits, but
processing and analyzing huge datasets with this range is costly and thus, the intensity
data were resampled to 8 bits.

A point cloud with corrected intensities, containing only ground points was modeled
using a triangular irregular network (TIN) to generate a digital terrain model (DTM), with
a sample distance of 0.50 m. The point cloud (once ground points were removed) was
normalized using the DTM. The result is a normalized point cloud with only vegetation-
related points included, mapped on flat terrain. After that, outliers were removed according
to the expected heights of the trees existing in the area; points below 0 m and above 40 m
were removed. The normalized point cloud filtered for outliers was interpolated using the
p2r algorithm, with a subcircle radius of 0.1 m, and the spatial interpolation to fill the empty
pixels used a TIN. The p2r algorithm is based on the “points-to-raster” method [48] for each
pixel of the output raster and the height of the highest point is assigned, resulting in a
canopy height model (CHM with a sampling distance of 0.50 m) (Figure 1). This method
was chosen due to the processing speed and good smoothing of the canopy model.

The normalized point cloud was then clipped, based on vector files defining the
perimeter of the plots surveyed in the field, from which LiDAR metrics at each plot level
were extracted. Overall, 54 metrics were extracted using elevation, intensity, and pulse
return values (Table 2) from each point cloud of each plot, which served as input data for
the regression models.

2.4. Input Data Selection

Different numbers and combinations of input data for the different machine learning
models were tested. Thus, from the 54 LiDAR metrics previously extracted, two further
analyses were performed to reduce the number of observations as input data.

The first analysis was a correlation calculation using the Pearson (r) method. The
LiDAR metrics having a correlation coefficient greater than 0.70 and smaller than −0.70
were selected. If two or more metrics had a high correlation (direct or inverse), only one of
these metrics was maintained and the others were excluded as explained by [49,50]. We
aimed to keep the number of uncorrelated metrics equal to the number of samples. For
that reason, from the 54 extracted LiDAR metrics, 15 metrics were maintained after the
aforementioned analysis.

The second analysis was the PCA (principal component analysis), which is a technique
that makes a linear transformation of highly correlated variables generating a new set of
uncorrelated orthogonal variables, called principal components (PCs) [51,52]. In this case,
the 54 LiDAR metrics were transformed into a smaller set of uncorrelated metrics with the
most ones [51]. The PCAs were extracted by using the FactoMineR R package [53]. Due to
the different scales of the LiDAR metrics, a preliminary step was inserted for normalizing
the inputs to zero mean and unit variance. Five dimensions were retained in the results.
The selection of the main components was based on the Kaiser criterion [54], in which the
components with eigenvalues greater than one should explain most of the variations of the
LiDAR metrics [55,56].
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Having performed the previous analysis, 3 different sets of input data were available:
54 metrics extracted from LiDAR data, 15 non-correlated metrics, and 5 PCs which were
used as new input variables in the regression and machine learning techniques.

Table 2. Light detection and ranging (LiDAR) metrics extracted from normalized point clouds.

Metrics Description

ZMAX Maximum height
ZMEAN Mean height

ZSD Standard deviation of height distribution
ZSKEW Skewness of height distribution
ZKURT Kurtosis of height distribution

ZENTROPY Entropy of height distribution
PZABOVEZMEAN Percentage of returns above ZMEAN

PZABOVE2 Percentage of returns above 2 m

ZQx Xth percentile (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
80, 85, 90, 95) of height distribution

ZPCUMx Cumulative percentage of return in the Xth layer (1 to 9) with f(z)
the probability distribution of elevations

ITOT Sum of intensities for each return
IMAX Maximum intensity

IMEAN Mean intensity
ISD Standard deviation of intensity

ISKEW Skewness of intensity distribution
IKURT Kurtosis of intensity distribution

IPGROUND Percentage of intensity returned by points classified as ground

IPCUMZQx Percentage of intensity returned below the Xth (10, 30, 50, 70, 90)
percentile of height

PXth Percentage of Xth returns (1 to 5)
PGROUND Percentage of returns classified as ground

2.5. Regression Techniques Settings

In this study, the forest stand and diversity variables were derived by machine learning
techniques tested in the R environment [37] and the associated packages for each method.
We tested the OLS and three methods of regression by supervised machine learning: ANN,
RF, and SVM, whose inferences are based on inductive reasoning, in which the process of
approximation of functions is performed by the knowledge acquired [57].

The OLS is a traditional approach to data modeling. It has advantages in terms of
simplicity and ease-making inferences with good predictive performance [58]. OLS fitting
was performed using the Carret package [59]. Considering that it is not possible to apply
OLS with more predictors than samples, the test case with the 54 LiDAR metrics as input
was not tested with this method.

Using as inputs the 5 PCs (OLS–5) and the 15 uncorrelated LiDAR metrics (OLS–15), a
selection of the predictor variables was performed for each of the seven forest variables
to be estimated. This selection was implemented in R with the Leaps package using the
regsubsets function [60], as described by [61]. This function works in a similar way to
the stepwise method, and we set the maximum number of predictor variables to not
exceed a ratio of 1:3, compared to the number of samples, that is, only a maximum of
5 predictor variables could be selected in each set of input data for each forest variable
to be estimated. Subsequently, from the set of 5 predictor variables, we selected those
statistically significant, according to the p-value at an α = 0.05, for a given variable. Then,
after selecting the predictor variables, the OLS model was fitted.

ANNs are computational models inspired by the human nervous system, that acquire
knowledge through a learning process, with synaptic weights that indicate the strength
of the connections between neurons [62]. Multilayer perceptrons are a type of network
having a universal approach for any continuous function and are typically defined by the
input layer, at least a hidden layer made up of neurons, and an output layer [62,63]. Five
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different ANNs architectures using the neuralnet package [64] were tested (Table 3). The
input metrics data were first normalized to belong to the [0,1] range. The backpropagation
algorithm was used, with a learning rate of 0.01. The activation function was logistical,
and the type of network was multilayer perceptron, in which one, two, and three hidden
layers were tested. For one hidden layer, one architecture was tested, and for two and three
hidden layers, two architectures were tested.

Table 3. Summary of the architectures adopted for modeling using artificial neural networks (ANNs).

Number of Hidden Layers Inputs Architecture * Name

1
5 PCs 5–3–1 ANN–5–1

15 Metrics 15–4–1 ANN–15–1
54 Metrics 54–8-1 ANN–54–1

2A
5 PCs 5–16–8–1 ANN–5–2A

15 Metrics 15–16–8–1 ANN–15–2A
54 Metrics 54–16–8–1 ANN–54–2A

2B
5 PCs 5–6–3–1 ANN–5–2B

54 Metrics 54–55–28–1 ANN–54–2B

3A
5 PCs 5–16–8–4–1 ANN–5–3A

15 Metrics 15–16–8–4–1 ANN–15–3A
54 Metrics 54–16–8–4–1 ANN–54–3A

3B
5 PCs 5–6–3–1–1 ANN–5–3B

54 Metrics 54–55–28–14–1 ANN–54–3B
* The first number refers to the number of input data and the last number to the output data. The intermediate
numbers are the number of neurons in each hidden layer.

In the case of one hidden layer, the method proposed by [65] was adopted. In this
method, the input layer with the number of inputs was equal to the number of metrics
(15 or 54) or PCs (5) adopted. The number of neurons was defined by the square root of
the number of variables in the input layer times the number of outputs; in this case, one
for each of the forest variables studied. The output layer contained the estimations of the
forest variables.

For the ANNs with two and three hidden layers, configurations named “A” and “B”
were assessed. The configurations “A” sets the number of LiDAR metrics or the PCs in the
input layer. In the first hidden layer, the number of neurons was defined as the number
of surveyed plots (15) plus the number of outputs (case one). In the second hidden layer,
the number of neurons was half of the number of neurons of the previous layer. If the
architecture had three hidden layers, the number of neurons in the third layer was half
of the number of neurons in the second layer. The configuration “B” sets the number of
neurons in the first hidden layer as the number of inputs (LiDAR metrics or PCs) plus the
number of outputs (as we were doing regression, the number of outputs was one). The
second hidden layer had half the number of the first. Having a third hidden layer, the
number of neurons should be half of the second. It is worth noting that for the case with
15 metrics as input, only one configuration was tested with two and three hidden layers
since the number of metrics and surveyed plots was the same and there was no difference
between configurations A and B.

The RF algorithm is based on decision trees. The rationale of this technique is to grow
a set of decision trees (referred to it as “forest”) such that the correlation between these
trees remains as low as possible. Randomness is placed in the forest using a different subset
of training samples for each tree, so instances of the training set are randomly extracted,
aiming to train a specific number of trees in the “forest”. In addition, for each tree node, a
random subset of the input variables is used to learn the partition function, making the
decision trees as independent as possible, improving the robustness and generalization of
the data set [66,67]. For the estimation of variables using the RF method, the randomForest
package [68] was used. The number of decision trees constructed was 1000, and in each
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node of the tree, the number of predictor variables randomly sampled was a third of the
number of inputs. The nomenclature adopted for the inputs of this regression method
using the PCs, 15 and 54 LiDAR metrics were RF-5, RF-15, and RF–54, respectively.

SVM is an algorithm that uses the concept of “margins”, which is the shortest distance
between the decision surface and any of the samples [69]. The main idea of this technique is
to fit optimal decision surfaces (called hyperplanes) to a set of training samples, for deriving
the linear dependency between unidimensional target variables and n-dimensional input
vector pairs [69–71]. SVM with epsilon regression type (ε-SVM) was used, with two
necessary packages of R environment: kernlab [72] and e1071 [73]. The fitting with the
ε-SVM method was performed for three sets of inputs: 54 LiDAR metrics, 15 uncorrelated
metrics, and the 5 PCs. Three types of kernels were also tested for each of the three inputs:
linear, polynomial, and radial. The value adopted for the cost was 1 (one), the gamma
parameter was defined as the inverse of the number of samples (1/15), and the epsilon
parameter was 0.1. A summary of each parameter and input data used for fitting with the
ε-SVM approach is in Table 4.

Table 4. Summary of the parameters adopted for modeling using epsilon regression type-support
vector machine (ε–SVM).

Kernel Type Inputs Name

Linear
5 PCs SVM–5–L

15 Metrics SVM–15–L
54 Metrics SVM–54–L

Polynomial
5 PCs SVM–5–P

15 Metrics SVM–15–P
54 Metrics SVM–54–P

Radial
5 PCs SVM–5–R

15 Metrics SVM–15–R
54 Metrics SVM–54–R

2.6. Evaluation and Performance of Tested Models

The bootstrap resampling process was used for the estimation, with the performance
of 1000 random bootstraps, with a set of data from this resampling being drawn in each
analysis, consisting of all seven response variables, as well as the different input data for
each technique of machine learning tested in this study [74], as described in Section 2.5.
The performance of all modeling techniques (OLS, ANN, RF, SVM) with all different set-
tings was assessed using leave–one–out cross-validation (LOOCV). A total of 14 reference
samples were used to train the model and the remaining one was used for calculating
the prediction error; this was repeated for each reference sample for cross-validation. The
following statistics were calculated: root-mean-square error (RMSE) (Equation (4)) and
bias (Equation (5)), both in percentage values.

RMSE% =

√
∑(yi−ŷi)2

n−1
∑ yi

n

· 100 (4)

BIAS% =
∑(ŷi − yi)

∑ yi
· 100 (5)

where yi is the observed value, ŷi is the predicted value and n is the number of observations.
Instead, the selection of the best regression technique to predict each of the seven forest

variables was based on RMSE (%), bias, and the Akaike information criterion (AIC) [75],
which is a measure of the quality of an adjusted model, using the maximum likelihood
method (Equation (6)). According to Bozdogan [76], complex models with many variables
tend to be penalized through the AIC, advantaging simpler models. A good model is
one that has minimum AIC among all the other models [77]. Due to the small number
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of samples, we used an AIC correction (Equation (7)), developed by [78], since there is
a tendency for AIC to select models with many parameters in the case of small samples.
AICc adds an extra term penalty to the number of parameters [78,79].

AIC = −2 ln(L) + 2k (6)

where L is the maximum likelihood of estimated parameters and k is the number of
parameters in the model.

AICc = AIC + 2
k(k + 1)
n− k− 1

(7)

where k is the number of parameters in the model and n is the number of samples.
For each given variable, the best model presented a lower RMSE (%) value, a bias close

to zero, and had the lowest AICc value among the models tested and with the various input
configurations. The contribution of each input data (LiDAR metric or PC) to the best model
selected, when estimating each forest variable, was shown for a better understanding of
the physical meaning of these inputs in the response variables.

3. Results
3.1. Correlation Analysis and PCAs

Some LiDAR metrics were highly correlated with each other, as shown in Figure 3,
where the stronger the blue shade is, the greater the positive correlation is, and the stronger
the red shade is, the greater the inverse correlation is. After correlation analysis, the 15
resulting metrics were: ZMAX, ZSKEW, ZQ5, ZQ30, ZQ75, ZPCUM5, ZPCUM7, ZPCUM9,
PZABOVE2, P2TH, P5TH, PGROUND, IMAX, IPZCUMZQ50, IPZCUMZQ90. The mean-
ing of these metrics is described in Table 2.

Figure 3. Correlogram between the 54 extracted LiDAR metrics.
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The first five PCs explained 90% of the variability of LiDAR metrics, according to
the Kaiser criterion. Figure 4a shows the contribution of each PC in the total variance.
Some authors, such as [13,19], have used the PCA to select variables. They selected one
single metric from each PC, based on the highest eigenvector value. However, selecting a
single metric may reduce the accuracy, since relevant information from the other metrics
is missed.

Figure 4. (a) First five principal components (PCs) and the percentage of variance explained by each
one. (b) Projection of Table 5. PCs and the LiDAR metrics.
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Table 5. Selection of the best model for each estimated forest variable.

Variables RMSE (%) Bias (%) AICc Best Model Fitted

MDBH 5.6 0.60 15.03 ANN–5–2B
QMD 5.2 −0.03 14.44 ANN–5–2B

BA 22.5 −0.24 9.33 ANN–5–2B
DEN 16.3 −12.31 −6.75 ANN–5–2B
NTS 27.6 −12.49 4.90 ANN–5–3B
H’ 10 −1.75 20.11 ANN–5–3B
D 8.4 3.64 24.55 ANN–5–3B

In this study, we decided to use the new variables created from the PCA as input,
since they hold information about the importance of each metric in each of the 5 PCs. For
further understanding of the physical meaning of each PC, the projection of the LiDAR
metrics is shown for the 5 PCs that explain most of the data variance (Figure 4b).

3.2. Model Performance and Evaluation

Considering all the machine learning techniques and test cases (in respect to input
data and architecture), a total of 27 combinations were examined for estimating the seven
forest variables used. Figure 5a shows the RMSE (%) of all the models (OLS, ANN, RF, and
SVM) with the different settings for each one of the variables. The results of the adjusted
linear models (OLS) with the significant input data, based on the p-value are shown in
Table S2 in the Supplementary Materials.

Figure 5. (a) RMSE in percentage for the regression methods tested for the seven estimated forest
variables; (b) Bias in the percentage of each modeled variable for each regression method tested.
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The MDBH variable, represented by the dark green, was estimated with the lowest
RMSE, with an average RMSE of 8.05%, followed by QMD (orange bars) and D (dark
blue bars), with RMSE average values of 9.3% and 10.9%, respectively. The RMSEs were
the highest for NTS (light blue bars), whose average was 47.6%. As seen in Table 1, the
variables with the lowest RMSE were the ones with the lowest CV%, below 20%, which is
the range of values that do not have high variability between the surveyed plots.

Analyzing the methods for variables estimation, the lowest RMSE values were achieved
with ANNs, specifically with the PCs as inputs, whose RMSE bars (Figure 5a) were lower
when compared to other methods, including the lowest RMSE value for the NTS variable.
Further, the RF-5 and SVM-5 methods resulted in low RMSE (%), except for the NTS
variable, but with a high bias when compared with the ANNs (Figure 5b). On the other
hand, the highest RMSE value occurred with SVM-L, with 54 LiDAR metrics as inputs,
with an average value for the method of 104%. With this method, the highest values of
RMSE (%) were also found for all seven modeled variables. The highest values of RMSE
(%) were also found for all seven modeled variables, including values above 100%, found
for the variables BA (139.1%), DEN (272.7%), and NTS (138.1%) which were not included
in the chart because of the scale.

Figure 5b shows the bias for the 27 methods tested on the seven forest variables.
These seven variables were estimated with high bias (%), and the highest among all tested
approaches, was using the SVM–54–L method. The MDBH variable showed a ± 9% bias
except for the SVM-method 15-P, which was the second most biased method, with a value
of −18.9%. The QMD variable presented the second largest bias for the SVM–5–L method,
with a value of −12.17%, while the other values were between ±6%. The Shannon–Weaver
(H’) and Simpson (D) indexes showed a bias of ±8.5%, except for the SVM–15–L with a
value of −18.1% for the variable H’ and the ANN-54-2A with a bias of 12.9% for variable D.
These results indicate that these variables (MDBH, QMD, H and D’) were well estimated
with a favorable errors distribution.

The estimation of the MDBH variable showed an underestimated trend in 13 regression
methods and the QMD was underestimated in 11 of the 27 tested methods. The BA variable
was underestimated in 14 of the 27 tested methods, with the most discrepant value of
−199.6% occurring with the SVM-54-L method. An overestimation of about 50% was also
observed for the OLS-15; SVM–5–P; SVM–15–P, and SVM–54–R methods. DEN was also
underestimated in 13 methods. SVM-54-L method presented a bias of −237.3% and the
OLS-15 method presented the highest overestimation with a bias of 42%. The NTS was
underestimated in all tested models, except with the ANN–54–2A method. A bias lower
than -45% in 15 of the 27 tested methods were found, with the most discrepant value of
−123.5% with the SVM–54–L method. The bias values of the variables BA, DEN, and NTS,
estimated with the SVM–54-L were not presented in Figure 5b due to the differences in
scale. The underestimation of the values was also noted for variable H’ in 25 trials and the
variable D was overestimated in 23 regression trials.

To sum up, we used the AICc as a numerical value to drive the choice of the best
regression method when predicting forest variables (Table 5). Thus, the best compromise
model is the one with the lowest error (RMSE), low bias, and the minimum possible
variables to be estimated, while at the same time, it best explains the behavior of the
response variable [76].

According to the adopted criteria, as shown in Table 5, ANN using the five PCs as input
was the regression method that best estimated the forest variables, with differences in the
number and the configuration adopted for the hidden layers. The variables MDBH, QMD,
BA, and DEN were better estimated using two hidden layers, with the “B” configuration
(see Table 3). For the variables NTS, H’, and D, the ANN with three hidden layers and “B”
configuration, was the method that best estimated these variables. The variables derived
from DBH (QMD and BA) and derived from BA(DEN), have the same ANN configuration
as the best modeling method (ANN–5–2B). This was also observed in the case of H’and
D’, whose calculation involves the number of species, the best method being ANN-5-3B,
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which was the same for the variable NTS. However, considering the limited number of
sample data, the use of complex architectures with two and three layers in ANN, and the
fact that the selected metrics are hidden, there is a risk of overfitting. The test case in which
the most important inputs were selected before training the ANN presented a reduced risk
of using irrelevant input metrics.

3.3. Importance of Input Metrics

The relative importance of each PC for estimating forest variables for the best-selected
regression method is shown in Figure 6. The dark gray bars indicate the two predictor
variables with the greatest contribution to the estimation of a given forest variable. For
MDBH, the fifth PC was the most important predictor variable, followed by the second PC.

Figure 6. Relative importance of PCs for each forest variable modeled by the best-selected regres-
sion method.

On the other hand, for the QMD variable, the second PC was the most important
predictor variable, as well as for BA, and then the fifth PC. For BA, the second predictor
variable that most contributed to the estimate was the fourth PC. It is possible to verify
some relationships, as in the case of QMD and BA, whose predictor variable with the
greatest contribution is the same, since the QMD is obtained by the inverse formula of
BA. Other relationships can be observed, e.g., MDBH and QMD, in which the predictor
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variables that most contribute to the estimate are the same, but inverted (since QMD is
also derived from MDBH). BA and DEN share the fourth PC in common, as the density
considers the area occupied by the tree trunks.

The number of tree species (NTS) has the first PC as the most important predictor
variable, followed by the fifth PC. Still, in this case, the contribution of the second predictor
variable is less than 50%, different from that observed in the other estimated variables.
The Shannon–Weaver (H’) and Simpson (D) indexes share the third PC with the greatest
relative importance, followed by the fourth PC and the fifth PC, respectively. As with
the other estimated variables, we can observe some relationships here as well. In their
formulation, both indexes H’ and D use the number of species and individuals and, thus, it
would be expected this similarity with the most important predictor. The variables D and
NTS (Figure 6) have as the second predictor variable, the fifth PC, indicating a relation of
these two variables as mentioned above.

This interpretation was based on the empirical assessment of the results, since LiDAR
metrics and their respective transformations, i.e., PCA, may not always have a physical
meaning in the estimation of a given variable. Additionally, as shown in Figure 4b, the
combination of several LiDAR metrics (i.e., the various metrics of pulse elevation, intensity
and return), when transformed, provide relevant information on each PC and not a single
metric with a higher eigenvalue, and this combination is what gave the results obtained.

4. Discussion

Many combinations of input data have been tested with various regression techniques
for estimating variables. This section critically discusses those with the most significant
impact on the results, both positive and negative, based on the criteria established for
choosing the regression technique.

According to [20,24,80], before using LiDAR metrics to build models, a pre-selection
and/or transformation of these metrics is necessary to obtain better relations with the
variable to be estimated. However, in this process, the selected metrics may not have
physical meaning and may differ entirely according to the forest to be studied. This was
confirmed in our study, in which the best results were obtained using a previous reduction
of dimensionality by the PCA. Some methods, such as RF, also serve to select variables,
which could also be tested to verify the consistency of the results obtained in this study [7].

The use of ANNs for the estimation of forest variables has been growing, and several
studies have been developed in Brazilian forests using this technique as an alternative
to OLS. Many of these studies are mainly concerned with estimating variables such as
height, volume, the shape of the trunk and tapering, and prognosis of yield and production
in forests of Eucalyptus spp, Pinus spp, and Tectona grandis, as listed by [81], in Black
Wattle plantations [18], in native forests for prediction of the diametric distribution [82,83]
and biomass [28], both in the Amazon Forest and in the Atlantic Forest biome, aimed at
estimating surviving individuals and mortality within the forest [84].

Most of these studies worked with a high sample size and the configuration of the net-
works for the estimation of the variables had only one hidden layer. This configuration was
possibly adopted because the forests, were equian (trees with the age) and homogeneous,
with low variance between individuals, thus requiring the adjustment of less complex
networks. However, even in studies with native forests, there is a trend to use only one
hidden layer with a variable number of neurons within that layer.

In our study, ANNs with only one hidden layer, with the 54 metrics or 15 uncorrelated
LiDAR metrics, presented the highest RMSE% for the studied variables (on average 20%),
compared with the other networks (Figure 5a) and underestimated five of the seven vari-
ables (Figure 5b). Silva et al. [16] estimated the volume in clonal plantations of Eucalyptus
spp. using several machine learning techniques with LiDAR metrics. They also assessed
the different impacts of sample size on estimates, concluding that the sample size influ-
ences RMSE (%) and bias (%). The larger the sample size, the lower the values of the
percentages are up to a certain level, where the sample size no longer influences them.
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Among the methods tested, the ANNs were the most susceptible to outliers. Tropical
forests are more complex environments than planted forests, due to the great heterogeneity
and diversity, requiring architectures with two hidden layers instead of one. This is aligned
with [85], who also stated that the processing capacity of a neural network is related to
its connectivity; i.e., in more complex jobs, as the demand for hidden layers increases, the
number of neurons in the first hidden layer increases as well. However, with the rise of the
number of hidden layers, the chance of convergence to a local minima increases, resulting
in overfitting [86], especially when using a neural network with great learning capacity
using few samples, in which the neural networks memorize the training data but lose the
ability to generalize [87].

For this study case, the best neural network was the one with two and three hidden
layers. In addition, careful selection of input metrics is important when using the ANN
technique, since metrics that are unrelated to variables to be estimated can have a negative
influence on the predictive power of the model [88,89]. Thus, the use of LiDAR metrics
transformed by the PCAs was effective in the use of ANN, being the most appropriate
method in the estimates in this study.

When working with a multilayer perceptrons neural network, usually one hidden
layer is sufficient to estimate variables [86]. In complex problems, where discontinuous
data modeling is required, two hidden layers can well represent complex functions, with
better fitting [62,86]. However, it is not usual to use more than two hidden layers to estimate
variables, due to the risk of overfitting [86].

OLS and RF were the methods presenting an intermediate performance in the esti-
mation of forest variables, according to the criteria used in this study, for the selection of
the most appropriate regression technique. The RMSE (%) bars in Figure 5a are higher
with OLS, using uncorrelated LiDAR metrics, than with OLS using PCAs. However,
these techniques showed large bias, especially for the BA, DEN, and NTS variables. The
transformations of the independent variables in the OLS, such as logarithm, square root,
square, or cube, can improve estimates using this regression method, especially when
the assumptions of classical statistics are not met [71]. However, these transformations
do not guarantee unbiased estimates, and when returned to the original scale, a bias is
introduced, requiring an appropriate adjustment to avoid introducing a large bias in the
estimates [89,90]. The transformation of PCs may have introduced bias in the estimation
by OLS (Figure 5b), but this has not been quantified. The estimate by the RF method, on
the other hand, had similar behaviors, both according to RMSE (%) of the variables and
to the bias. Some issues can influence the estimates with the RF [28]: the number of built
decision trees, the number of variables randomly sampled as candidates at each split, and
the number of training samples. According to the same authors, the amount of training
data is an important issue when using RF, and was confirmed by [16], who concluded that
from 30% of the sample size, the method tends to improve and stabilize the RMSE (%)
and bias. As the number of training data in this study was low, they may have negatively
influenced the estimates with the RF.

Comparing all kernels for the SVM regression method, the linear model produced the
least accurate estimates, mainly with the input of 54 LiDAR metrics. This may indicate that
the training patterns are not linearly separable, presenting the largest RMSE (%) values
and underestimating five of the seven estimated variables (Figure 5). In a forest located in
the French Alps, the SVM technique was assessed with both a linear and a radial kernel,
to estimate some forest parameters [91]. The mathematical combination of some metrics,
as well as the use of PCA, to reduce the dimensionality of the data, were effective when
using the linear kernel. In Figure 5a, the use of PCAs significantly improved the estimate
with SVM–L and SVM-R, but in our case, even removing the most correlated variables,
a less accurate result was obtained with the radial kernel. In addition, the same authors
commented that the presence of outliers and the risk of overfitting in the SVM models
can reduce the estimates by this method. In the estimate of the volume in commercial
plantations of Eucalyptus spp., [13,17] used SVM with the radial base function kernel. Both
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authors mentioned the great estimation power of the SVM, but compared to the other
methods, it presented slightly higher RMSE (%) values. This behavior was also observed in
this study, in which there was a small difference between the polynomial and radial kernel
for the average value of RMSE (%) in the estimates, and was more evidenced with the use of
PCs as inputs (22.9% for SVM–5–P and 16.7% for SVM–5–R; 23.7% and 19.9% for SVM–15–P
and SVM–15–R, respectively; and for SVM–54–P, 18.7% and 24.9% for SVM–54–R), but the
values were slightly higher than those found for the RF (Figure 5a), for example.

The previous analysis was focused on the comparison of machine learning techniques
for estimating forest variables. The following discussions will emphasize the comparison of
the estimated variables. To the best of our knowledge, there are no studies estimating stand
and diversity variables for native Brazilian Atlantic forests, and there are very few related
to tropical forests, most of them focusing on biomass estimation. Thus, our comparisons
were made with studies that estimated the same stand and diversity variables but for
native forests in other countries.

Table 5 shows the RMSE (%) values obtained for each variable and the respective
regression method that provided the best estimate. The MDBH was the variable estimated
with higher accuracy (RMSE of 5.6%). Our results were better than those presented at [91]
whose RMSE value was 14.6% and at [82] whose RMSE was 33%. In the aforementioned
studies, greater variability of MDBH was observed among survey plots, which may have
resulted in higher RMSE values. In addition, our best result was achieved using the PCs
with the ANN, while in those studies, multiple linear regressions using raw LiDAR metrics
were performed. A similar observation was done about the results obtained for the QMD
variable. The stepwise method was used by [90] to select the metrics that would feed the
multiple linear regression model, and they estimated the QMD with a deviation from 12.5%
to 14%. Other authors [92] also used multiple linear regression, and achieved deviations of
15.4% and 30.5% for the QMD, while our best result had a deviation (i.e., RMSE) of 5.2%.

Vincent et al. [93] estimated the forest variables QMD, BA, and DEN in a tropical forest
in French Guiana, using simple and multiple linear regression with LiDAR metrics and
stand variables as inputs in various forest sites, such as mature, explored, and secondary
forests. Adjusting general and specific equations by site, the regression by forest site
showed lower RMSE values for BA and DEN (7.9% and 9.1%, respectively). For the QMD,
the regression for the whole area better estimated this variable, with an RMSE of 4.9%,
while DEN presented slight variations compared to that found in this study, in the best
case (16.5%), BA already presented greater errors. Some authors [80,82,90–92] have studied
natural boreal and temperate forests, reporting the difficulty in determining these variables
using LiDAR metrics. They achieved RMSE ranges for BA between 18 and 46.8% and for
DEN between 18.4 and 128.6%.

The relationships of the basal area with density within the forest structure are very
complex, varying according to spacing and the stage of forest development, among others.
This results in patterns that are more difficult to interpret and consequently estimate. Thus,
there is a set of assumptions and site-specific considerations that must be made before
estimating these highly variable variables [17]. This confirms the results of [93], who
improved the estimates by separating the forest into smaller sites. The same analogy for
the variable NTS can be done, which varies greatly in different types and stages of forest
development, especially for a tropical forest. In a natural forest in southern England, [82]
estimated NTS using LiDAR metrics and individual tree crown metrics as inputs in multiple
linear regression. As a result, the RMSE (%) in that study was 25%, while our result was
27.6%. This means that, regardless of the forest typology, the variables BA, DEN, and NTS
are difficult to estimate with LiDAR metrics.

Diversity indexes give more valuable data than the number of species since they
provide information on the diversity and floristic composition of the forest. Due to the high
variability within the site and the leaf-off and leaf-on conditions of the trees, [46] estimated
the Shannon–Waver and Simpson indexes with an RMSE of 37 and 24%, respectively, while
these indexes were estimated in this study, respectively, with a RMSE of 10 and 8.4%.
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Considering all issues, such as heterogeneous tropical forest, low field sample size,
and the criteria used to select the best results (lowest value of RMSE (%), bias (%) close to
zero, and low value of AICc) a neural network with complex architecture (two and three
hidden layers) may overfit sampled data. As stated by [86], the use of one hidden layer
is usually enough to solve problems using ANNs, however, an erroneous configuration
of neurons inside the hidden layer can also cause overfitting. Thus, for future studies, it
would be recommended to test ANN with one hidden layer, but varying the number of
neurons, as it was done by [82–85].

5. Conclusions

The results obtained in this work demonstrated that it is feasible to use LiDAR metrics
to estimate forest variables in a tropical forest with a particular focus on the Atlantic Forest
of Brazil, using LiDAR metrics with different machine learning approaches.

Methods to reduce the data dimensionality or selection of variables were of partic-
ular importance to achieve the results presented, mainly using the principal component
analysis (PCA). In this case, the combination of metrics of elevation, intensity, and pulse
returns allowed the relevant information in these metrics to be contained on principal
components (PCs).

Considering the adopted criteria for choosing the best modeling technique, principal
components (PCs) as new variables for artificial neural networks (ANNs) achieved the best
results. ANNs with two hidden layers better estimated the mean diameter at breast height
(MDBH), quadratic mean diameter (QMD), basal area (BA), and density (DEN) variables.
Three hidden layers were the best ANNs for a number of tree species (NTS) variables,
Shannon–Weaver (H’) and Simpson (D) diversity indexes.

For ANN, the predictor variables with the greatest contribution to the estimation of
forest variables, were the fifth PC, for the MDBH; the second PC for QMD and BA; the
fourth PC for DEN; the first PC for NTS, and the third PC for the H’and D indices.

While ANN was the most suitable regression technique for estimating the studied
variables, support vector machine (SVM) with linear kernel, using 54 LiDAR metrics as
input data, presented the worst performance, with the highest RMSE values (%) and more
biased estimates.

It is important to note that it is a pioneering study to estimate the population and
diversity variables of this type of tropical forest, and the results presented can be improved
later with more samples of field data and different areas for later validation. Nevertheless,
these findings can be applied in the management and preservation of these endangered
forest remnants with LiDAR data.
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