Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/22946
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorMartins-Neto, Rorai Pereira-
dc.contributor.authorTommaselli, Antonio Maria Garcia-
dc.contributor.authorImai, Nilton Nobuhiro-
dc.contributor.authorDavid, Hassan Camil-
dc.contributor.authorMiltiadou, Milto-
dc.contributor.authorHonkavaara, Eija-
dc.date.accessioned2021-09-01T08:05:35Z-
dc.date.available2021-09-01T08:05:35Z-
dc.date.issued2021-07-01-
dc.identifier.citationRemote Sensing, 2021, vol. 13, no. 13, articl. no. 2444en_US
dc.identifier.issn20724292-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/22946-
dc.description.abstractData collection and estimation of variables that describe the structure of tropical forests, diversity, and richness of tree species are challenging tasks. Light detection and ranging (LiDAR) is a powerful technique due to its ability to penetrate small openings and cracks in the forest canopy, enabling the collection of structural information in complex forests. Our objective was to identify the most significant LiDAR metrics and machine learning techniques to estimate the stand and diversity variables in a disturbed heterogeneous tropical forest. Data were collected in a remnant of the Brazilian Atlantic Forest with different successional stages. LiDAR metrics were used in three types of transformation: (i) raw data (untransformed), (ii) correlation analysis, and (iii) principal component analysis (PCA). These transformations were tested with four machine learning techniques: (i) artificial neural network (ANN), ordinary least squares (OLS), random forests (RF), and support vector machine (SVM) with different configurations resulting in 27 combinations. The best technique was determined based on the lowest RMSE (%) and corrected Akaike information criterion (AICc), and bias (%) values close to zero. The output forest variables were mean diameter at breast height (MDBH), quadratic mean diameter (QMD), basal area (BA), density (DEN), number of tree species (NTS), as well as Shannon–Waver (H’) and Simpson’s diversity indices (D). The best input data were the new variables obtained from the PCA, and the best modeling method was ANN with two hidden layers for the variables MDBH, QMD, BA, and DEN while for NTS, H’and D, the ANN with three hidden layers were the best methods. For MDBH, QMD, H’and D, the RMSE was 5.2–10% with a bias between −1.7% and 3.6%. The BA, DEN, and NTS were the most difficult variables to estimate, due to their complexity in tropical forests; the RMSE was 16.2–27.6% and the bias between −12.4% and −0.24%. The results showed that it is possible to estimate the stand and diversity variables in heterogeneous forests with LiDAR data.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofRemote Sensingen_US
dc.rights© by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTropical forestsen_US
dc.subjectAirborne laser scanningen_US
dc.subjectForest structureen_US
dc.subjectForest attributesen_US
dc.subjectArtificial intelligenceen_US
dc.subjectMachine learningen_US
dc.subjectMultiple linear regressionen_US
dc.subjectRandom foresten_US
dc.subjectSupport vector machineen_US
dc.subjectNeural networken_US
dc.titleIdentification of significative lidar metrics and comparison of machine learning approaches for estimating stand and diversity variables in heterogeneous brazilian atlantic foresten_US
dc.typeArticleen_US
dc.collaborationSão Paulo State Universityen_US
dc.collaborationFederal Rural University of Amazoniaen_US
dc.collaborationERATOSTHENES Centre of Excellenceen_US
dc.collaborationCyprus University of Technologyen_US
dc.collaborationNational Land Survey of Finlanden_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsOpen Accessen_US
dc.countryBrazilen_US
dc.countryCyprusen_US
dc.countryFinlanden_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.3390/rs13132444en_US
dc.identifier.scopus2-s2.0-85109210428-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85109210428-
dc.relation.issue13en_US
dc.relation.volume13en_US
cut.common.academicyear2020-2021en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment of Civil Engineering and Geomatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4715-5048-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.journal.journalissn2072-4292-
crisitem.journal.publisherMDPI-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
remotesensing-13-02444.pdfFulltext4.83 MBAdobe PDFΔείτε/ Ανοίξτε
remotesensing-1251873-supplementary.pdfSupplementary205.65 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

8
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

8
Last Week
1
Last month
0
checked on 29 Οκτ 2023

Page view(s)

236
Last Week
1
Last month
3
checked on 6 Ιουν 2024

Download(s)

208
checked on 6 Ιουν 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons