Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/18326
Τίτλος: Working with Gaussian random noise for multi-sensor archaeological prospection: Fusion of ground penetrating Radar depth slices and ground spectral signatures from 0.00 m to 0.60 m below ground surface
Συγγραφείς: Agapiou, Athos 
Sarris, Apostolos 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Fusion;Archaeological prospection;Buried archaeological remains;Ground penetrating radar (GPR);Ground spectral signatures;Bayesian Neural Network
Ημερομηνία Έκδοσης: 13-Αυγ-2019
Πηγή: Remote Sensing, 2019, vol. 11, no. 16, pp. 1895
Volume: 11
Issue: 16
Start page: 1895
Project: Synergistic Use of Optical and Radar data for cultural heritage applications (PLACES) 
Περιοδικό: Remote Sensing 
Περίληψη: The integration of different remote sensing datasets acquired from optical and radar sensors can improve the overall performance and detection rate for mapping sub-surface archaeological remains. However, data fusion remains a challenge for archaeological prospection studies, since remotely sensed sensors have different instrument principles, operating in different wavelengths. Recent studies have demonstrated that some fusion modelling can be achieved under ideal measurement conditions (e.g., simultaneously measurements in no hazy days) using advance regression models, like those of the nonlinear Bayesian Neural Networks. This paper aims to go a step further and investigate the impact of noise in regression models, between datasets obtained from ground-penetrating radar (GPR) and portable field spectroradiometers. Initially, the GPR measurements provided three depth slices of 20 cm thickness, starting from 0.00 m up to 0.60 m below the ground surface while ground spectral signatures acquired from the spectroradiometer were processed to calculate 13 multispectral and 53 hyperspectral indices. Then, various levels of Gaussian random noise ranging from 0.1 to 0.5 of a normal distribution, with mean 0 and variance 1, were added at both GPR and spectral signatures datasets. Afterward, Bayesian Neural Network regression fitting was applied between the radar (GPR) versus the optical (spectral signatures) datasets. Different regression model strategies were implemented and presented in the paper. The overall results show that fusion with a noise level of up to 0.2 of the normal distribution does not dramatically drop the regression model between the radar and optical datasets (compared to the non-noisy data). Finally, anomalies appearing as strong reflectors in the GPR measurements, continue to provide an obvious contrast even with noisy regression modelling.
ISSN: 20724292
DOI: 10.3390/rs11161895
Rights: © by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
Type: Article
Affiliation: Cyprus University of Technology 
University of Cyprus 
Foundation for Research & Technology-Hellas (F.O.R.T.H.) 
ERATOSTHENES Centre of Excellence 
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Working with Gaussian.pdf5.71 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

2
checked on 14 Μαρ 2024

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s) 50

400
Last Week
3
Last month
13
checked on 9 Μαϊ 2024

Download(s)

70
checked on 9 Μαϊ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons