Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/1744
Τίτλος: | A Sparse Nonparametric Hierarchical Bayesian Approach Towards Inductive Transfer for Preference Modeling | Συγγραφείς: | Chatzis, Sotirios P. Demiris, Yiannis |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Computer science;Artificial intelligence;Expert systems (Computer science);Knowledge management;Computer multitasking;Preference learning;Nonparametric models;Multitask learning;Dirichlet process;Automatic relevance determination | Ημερομηνία Έκδοσης: | 15-Ιου-2012 | Πηγή: | Expert systems with applications, 2012, vol. 39, no. 8, pp. 7235-7246 | Volume: | 39 | Issue: | 8 | Start page: | 7235 | End page: | 7246 | Περιοδικό: | Expert systems with applications | Περίληψη: | In this paper, we present a novel methodology for preference learning based on the concept of inductive transfer. Specifically, we introduce a nonparametric hierarchical Bayesian multitask learning approach, based on the notion that human subjects may cluster together forming groups of individuals with similar preference rationale (but not identical preferences). Our approach is facilitated by the utilization of a Dirichlet process prior, which allows for the automatic inference of the most appropriate number of subject groups (clusters), as well as the employment of the automatic relevance determination (ARD) mechanism, giving rise to a sparse nature for our model, which significantly enhances its computational efficiency. We explore the efficacy of our novel approach by applying it to both a synthetic experiment and a real-world music recommendation application. As we show, our approach offers a significant enhancement in the effectiveness of knowledge transfer in statistical preference learning applications, being capable of correctly inferring the actual number of human subject groups in a modeled dataset, and limiting knowledge transfer only to subjects belonging to the same group (wherein knowledge transferability is more likely) | URI: | https://hdl.handle.net/20.500.14279/1744 | ISSN: | 09574174 | DOI: | 10.1016/j.eswa.2012.01.053 | Rights: | © 2012 Elsevier. | Type: | Article | Affiliation: | Imperial College London | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
1
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
1
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
902
Last Week
10
10
Last month
32
32
checked on 1 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα