Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1744
DC FieldValueLanguage
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorDemiris, Yiannis-
dc.date.accessioned2013-02-19T15:25:24Zen
dc.date.accessioned2013-05-17T05:22:04Z-
dc.date.accessioned2015-12-02T09:54:11Z-
dc.date.available2013-02-19T15:25:24Zen
dc.date.available2013-05-17T05:22:04Z-
dc.date.available2015-12-02T09:54:11Z-
dc.date.issued2012-06-15-
dc.identifier.citationExpert systems with applications, 2012, vol. 39, no. 8, pp. 7235-7246en_US
dc.identifier.issn09574174-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/1744-
dc.description.abstractIn this paper, we present a novel methodology for preference learning based on the concept of inductive transfer. Specifically, we introduce a nonparametric hierarchical Bayesian multitask learning approach, based on the notion that human subjects may cluster together forming groups of individuals with similar preference rationale (but not identical preferences). Our approach is facilitated by the utilization of a Dirichlet process prior, which allows for the automatic inference of the most appropriate number of subject groups (clusters), as well as the employment of the automatic relevance determination (ARD) mechanism, giving rise to a sparse nature for our model, which significantly enhances its computational efficiency. We explore the efficacy of our novel approach by applying it to both a synthetic experiment and a real-world music recommendation application. As we show, our approach offers a significant enhancement in the effectiveness of knowledge transfer in statistical preference learning applications, being capable of correctly inferring the actual number of human subject groups in a modeled dataset, and limiting knowledge transfer only to subjects belonging to the same group (wherein knowledge transferability is more likely)en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relation.ispartofExpert systems with applicationsen_US
dc.rights© 2012 Elsevier.en_US
dc.subjectComputer scienceen_US
dc.subjectArtificial intelligenceen_US
dc.subjectExpert systems (Computer science)en_US
dc.subjectKnowledge managementen_US
dc.subjectComputer multitaskingen_US
dc.subjectPreference learningen_US
dc.subjectNonparametric modelsen_US
dc.subjectMultitask learningen_US
dc.subjectDirichlet processen_US
dc.subjectAutomatic relevance determinationen_US
dc.titleA Sparse Nonparametric Hierarchical Bayesian Approach Towards Inductive Transfer for Preference Modelingen_US
dc.typeArticleen_US
dc.collaborationImperial College Londonen_US
dc.subject.categoryElectrical Engineering - Electronic Engineering - Information Engineeringen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1016/j.eswa.2012.01.053en_US
dc.dept.handle123456789/54en
dc.relation.issue8en_US
dc.relation.volume39en_US
cut.common.academicyear2011-2012en_US
dc.identifier.spage7235en_US
dc.identifier.epage7246en_US
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.fulltextNo Fulltext-
crisitem.journal.journalissn0957-4174-
crisitem.journal.publisherElsevier-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Άρθρα/Articles
CORE Recommender
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
0
checked on Oct 29, 2023

Page view(s)

833
Last Week
7
Last month
25
checked on Nov 6, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.