Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/16042
Τίτλος: | Disturbed YouTube for Kids: Characterizing and Detecting Inappropriate Videos Targeting Young Children | Συγγραφείς: | Papadamou, Kostantinos Papasavva, Antonis S. Zannettou, Savvas Blackburn, Jeremy Kourtellis, Nicolas Leontiadis, Ilias Stringhini, Gianluca Sirivianos, Michael |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Computer Science;Computers and Society;Social and Information Networks | Ημερομηνία Έκδοσης: | 21-Ιαν-2019 | Project: | EnhaNcing seCurity And privacy in the Social wEb: a user centered approach for the protection of minors | Περίληψη: | A large number of the most-subscribed YouTube channels target children of very young age. Hundreds of toddler-oriented channels on YouTube feature inoffensive, well produced, and educational videos. Unfortunately, inappropriate content that targets this demographic is also common. YouTube's algorithmic recommendation system regrettably suggests inappropriate content because some of it mimics or is derived from otherwise appropriate content. Considering the risk for early childhood development, and an increasing trend in toddler's consumption of YouTube media, this is a worrisome problem. In this work, we build a classifier able to discern inappropriate content that targets toddlers on YouTube with 84.3% accuracy, and leverage it to perform a first-of-its-kind, large-scale, quantitative characterization that reveals some of the risks of YouTube media consumption by young children. Our analysis reveals that YouTube is still plagued by such disturbing videos and its currently deployed counter-measures are ineffective in terms of detecting them in a timely manner. Alarmingly, using our classifier we show that young children are not only able, but likely to encounter disturbing videos when they randomly browse the platform starting from benign videos. | URI: | https://hdl.handle.net/20.500.14279/16042 | Type: | Report | Affiliation: | Cyprus University of Technology University of Alabama Telefonica Research Boston University |
Εμφανίζεται στις συλλογές: | Εκθέσεις/Reports |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Περιγραφή | Μέγεθος | Μορφότυπος | |
---|---|---|---|---|
1901.07046.pdf | 2.13 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s)
585
Last Week
0
0
Last month
5
5
checked on 21 Νοε 2024
Download(s)
502
checked on 21 Νοε 2024
Google ScholarTM
Check
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα