Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/14170
Τίτλος: | Atmospheric convection over complex terrain and urban canopy: Non-local ventilation mechanisms and application to pollution-dispersion and air-quality problems | Συγγραφείς: | Zilitinkevich, Sergej S. Hunt, J. C.R. Grachev, A. A. Esau, I. N. Lalas, D. P. Akylas, Evangelos Tombrou, M. Fairall, C. W. Fernando, H. J.S. Baklanov, A. Joffre, S. M. |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | Convection;Environmental modeling;Semi-organized eddies;Surface fluxes | Ημερομηνία Έκδοσης: | 27-Ιου-2007 | Πηγή: | NATO Security through Science Series C: Environmental Security 2007, Pages 163-164 | Περιοδικό: | NATO Security through Science Series C: Environmental Security | Περίληψη: | modern atmosphere-hydrosphere-biosphere model chains, convective boundary-layer models and parameterization packages represent the most important coupling agents, which essentially control the overall quality of predictions from coupled models. This paper focuses on the enhancement of turbulent mixing due to large-scale semi-organized eddies and interactions between large eddies and surface roughness elements up to very high obstacles such as buildings, rocks and hills. Large-scale structures in the shear-free convective boundary layers consist of strong plumes and wider but weaker downdraughts. Close to the surface they cause local "convective winds" blowing towards the plume axes. The latter generate turbulence, in addition to its generation by the buoyancy forces, and strongly contribute to the turbulent fluxes of heat and other scalars. This mechanism is especially important over very rough surfaces. The proposed model is validated against data from measurements over different sites and also through large-eddy simulation (LES) of convective boundary layers (CBLs) over a range of surfaces from very smooth to extremely rough. Excellent correspondence between model results, field observations and large-eddy simulations is achieved. The obtained resistance and heat/mass transfer laws are recommended for practical use inmeso-scale, weatherprediction, climate and other environmental models. © Springer 2007. | URI: | https://hdl.handle.net/20.500.14279/14170 | ISSN: | 18714668 | DOI: | 10.1007/978-1-4020-5877-6_15 | Type: | Article | Affiliation: | Division of Atmospheric Sciences Nansen Environmental and Remote Sensing Centre University College London University of Colorado Institute of Atmospheric Physics National Observatory of Athens National and Kapodistrian University of Athens Environmental Technology Laboratory Arizona State University Danish Meteorological Institute Finnish Meteorological Institute |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα