Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/13460
Τίτλος: | The good, the bad and the bait: detecting and characterizing clickbait on youtube | Συγγραφείς: | Zannettou, Savvas Chatzis, Sotirios P. Papadamou, Kostantinos Sirivianos, Michael |
metadata.dc.contributor.other: | Παπαδάμου, Κωνσταντίνος Σιριβιανός, Μιχάλης Χατζής, Σωτήριος Π. |
Major Field of Science: | Engineering and Technology | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | Clickbait;Deep learning;YouTube | Ημερομηνία Έκδοσης: | 24-Μαΐ-2018 | Πηγή: | IEEE Symposium on Security and Privacy Workshops, 2018, 24 May, San Francisco, United States | Project: | EnhaNcing seCurity And privacy in the Social wEb: a user centered approach for the protection of minors | Conference: | IEEE Symposium on Security and Privacy Workshops, SPW 2018 | Περίληψη: | The use of deceptive techniques in user-generated video portals is ubiquitous. Unscrupulous uploaders deliberately mislabel video descriptors aiming at increasing their views and subsequently their ad revenue. This problem, usually referred to as 'clickbait,' may severely undermine user experience. In this work, we study the clickbait problem on YouTube by collecting metadata for 206k videos. To address it, we devise a deep learning model based on variational autoencoders that supports the diverse modalities of data that videos include. The proposed model relies on a limited amount of manually labeled data to classify a large corpus of unlabeled data. Our evaluation indicates that the proposed model offers improved performance when compared to other conventional models. Our analysis of the collected data indicates that YouTube recommendation engine does not take into account clickbait. Thus, it is susceptible to recommending misleading videos to users. | URI: | https://hdl.handle.net/20.500.14279/13460 | DOI: | 10.1109/SPW.2018.00018 | Rights: | © 2018 IEEE. | Type: | Conference Papers | Affiliation: | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation |
CORE Recommender
SCOPUSTM
Citations
20
38
checked on 6 Νοε 2023
Page view(s) 50
375
Last Week
1
1
Last month
2
2
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα