Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/13460
Τίτλος: The good, the bad and the bait: detecting and characterizing clickbait on youtube
Συγγραφείς: Zannettou, Savvas 
Chatzis, Sotirios P. 
Papadamou, Kostantinos 
Sirivianos, Michael 
metadata.dc.contributor.other: Παπαδάμου, Κωνσταντίνος
Σιριβιανός, Μιχάλης
Χατζής, Σωτήριος Π.
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Clickbait;Deep learning;YouTube
Ημερομηνία Έκδοσης: 24-Μαΐ-2018
Πηγή: IEEE Symposium on Security and Privacy Workshops, 2018, 24 May, San Francisco, United States
Project: EnhaNcing seCurity And privacy in the Social wEb: a user centered approach for the protection of minors 
Conference: IEEE Symposium on Security and Privacy Workshops, SPW 2018 
Περίληψη: The use of deceptive techniques in user-generated video portals is ubiquitous. Unscrupulous uploaders deliberately mislabel video descriptors aiming at increasing their views and subsequently their ad revenue. This problem, usually referred to as 'clickbait,' may severely undermine user experience. In this work, we study the clickbait problem on YouTube by collecting metadata for 206k videos. To address it, we devise a deep learning model based on variational autoencoders that supports the diverse modalities of data that videos include. The proposed model relies on a limited amount of manually labeled data to classify a large corpus of unlabeled data. Our evaluation indicates that the proposed model offers improved performance when compared to other conventional models. Our analysis of the collected data indicates that YouTube recommendation engine does not take into account clickbait. Thus, it is susceptible to recommending misleading videos to users.
URI: https://hdl.handle.net/20.500.14279/13460
DOI: 10.1109/SPW.2018.00018
Rights: © 2018 IEEE.
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

38
checked on 6 Νοε 2023

Page view(s) 50

375
Last Week
1
Last month
2
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα