Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/13460
DC FieldValueLanguage
dc.contributor.authorZannettou, Savvas-
dc.contributor.authorChatzis, Sotirios P.-
dc.contributor.authorPapadamou, Kostantinos-
dc.contributor.authorSirivianos, Michael-
dc.contributor.otherΠαπαδάμου, Κωνσταντίνος-
dc.contributor.otherΣιριβιανός, Μιχάλης-
dc.contributor.otherΧατζής, Σωτήριος Π.-
dc.date.accessioned2019-04-07T17:10:30Z-
dc.date.available2019-04-07T17:10:30Z-
dc.date.issued2018-05-24-
dc.identifier.citationIEEE Symposium on Security and Privacy Workshops, 2018, 24 May, San Francisco, United Statesen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14279/13460-
dc.description.abstractThe use of deceptive techniques in user-generated video portals is ubiquitous. Unscrupulous uploaders deliberately mislabel video descriptors aiming at increasing their views and subsequently their ad revenue. This problem, usually referred to as 'clickbait,' may severely undermine user experience. In this work, we study the clickbait problem on YouTube by collecting metadata for 206k videos. To address it, we devise a deep learning model based on variational autoencoders that supports the diverse modalities of data that videos include. The proposed model relies on a limited amount of manually labeled data to classify a large corpus of unlabeled data. Our evaluation indicates that the proposed model offers improved performance when compared to other conventional models. Our analysis of the collected data indicates that YouTube recommendation engine does not take into account clickbait. Thus, it is susceptible to recommending misleading videos to users.en_US
dc.formatpdfen_US
dc.language.isoenen_US
dc.relationEnhaNcing seCurity And privacy in the Social wEb: a user centered approach for the protection of minorsen_US
dc.rights© 2018 IEEE.en_US
dc.subjectClickbaiten_US
dc.subjectDeep learningen_US
dc.subjectYouTubeen_US
dc.titleThe good, the bad and the bait: detecting and characterizing clickbait on youtubeen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.subject.fieldEngineering and Technologyen_US
dc.publicationPeer Revieweden_US
dc.relation.conferenceIEEE Symposium on Security and Privacy Workshops, SPW 2018en_US
dc.identifier.doi10.1109/SPW.2018.00018en_US
cut.common.academicyear2017-2018en_US
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeconferenceObject-
crisitem.project.funderEuropean Commission-
crisitem.project.grantnoENCASE-
crisitem.project.fundingProgramH2020-
crisitem.project.openAireinfo:eu-repo/grantAgreement/EC/H2020/691025-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-4956-4013-
crisitem.author.orcid0000-0002-6500-581X-
crisitem.author.parentorgFaculty of Engineering and Technology-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

38
checked on Nov 6, 2023

Page view(s) 50

375
Last Week
1
Last month
2
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.