Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/1277
Title: Minimum distance regression-type estimates with rates under weak dependence
Authors: Roussas, George G. 
Yatracos, Yannis G. 
Roussas, George G. 
Major Field of Science: Natural Sciences
Keywords: Regression analysis;Entropy;Estimation
Issue Date: 1996
Source: Annals of the Institute of Statistical Mathematics, 1996, vol. 48, no. 2, pp. 267-281
Volume: 48
Issue: 2
Start page: 267
End page: 281
Journal: Annals of the Institute of Statistical Mathematics 
Abstract: Under weak dependence, a minimum distance estimate is obtained for a smooth function and its derivatives in a regression-type framework. The upper bound of the risk depends on the Kolmogorov entropy of the underlying space and the mixing coefficient. It is shown that the proposed estimates have the same rate of convergence, in the L 1-norm sense, as in the independent case.
URI: https://hdl.handle.net/20.500.14279/1277
ISSN: 15729052
DOI: 10.1007/BF00054790
Rights: © Springer Nature
Type: Article
Affiliation : University of California 
Université de Montréal 
Appears in Collections:Άρθρα/Articles

Files in This Item:
File Description SizeFormat
10.1007_BF00054790.pdf660.92 kBAdobe PDFView/Open
CORE Recommender
Show full item record

SCOPUSTM   
Citations

4
checked on Nov 9, 2023

WEB OF SCIENCETM
Citations

3
Last Week
0
Last month
0
checked on Oct 13, 2023

Page view(s) 5

588
Last Week
2
Last month
3
checked on Dec 3, 2024

Download(s)

423
checked on Dec 3, 2024

Google ScholarTM

Check

Altmetric


Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.