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A b s t r a c t .  Under  weak dependence,  a min imum dis tance  es t imate  is ob ta ined  
for a smooth  function and its derivatives in a regress ion- type framework. The  
upper  bound  of the  risk depends  on the Kolmogorov ent ropy of the  under lying 
space and the mixing coefficient. I t  is shown tha t  the  proposed  es t imates  have 
the same ra te  of convergence, in the  L l - n o r m  sense, as in the  independent  case. 
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i. Introduction 

Let {Zj} be a strictly stationary discrete time-parameter time series of real- 
valued random variables (r.v.'s); no parametric model is stipulated for the time 
series. Then one of the many statistical problems of interest is that of nonpara- 
metrically estimating the conditional expectation of Zj+l on the basis of the im- 
mediately u previous observations Z j_~+I , . . . ,  Zj. This problem may be cast in a 
slightly different framework as follows. To this effect, set Xj = (Z j _~ + l , . . . ,  Zj) 
and Yj = Zj+I, so that (Xj, Yj) is a strictly stationary sequence of pairs of observa- 
tions. Then the problem of estimating $(Zj+I I Zj , . . . ,  Zj-u+l) is identical to that 
of estimating the regression $(Yj ] Xj).  There are other variations of the initial 
problem, such as, for example, the estimation of the expected value m steps ahead 
in time in terms of u observations as above; that is, $(Zj+m I Zj .... , Zj-~+I). 
Again, this problem is the same as that of estimating the E(Yj I Xj), where now 
Yj = Zj+~ and Xj is aS before. 

From this point on, consider the observations (Xj, Yj), j > 1, where the 
X}s are X-valued and the Yjs, the respective responses, are real-valued. The set 

* This work was partially supported by a research grant from the Natural Sciences and 
Engineering Research Council of Canada. 

267 



268 GEORGE G. ROUSSAS AND YANNIS G. YATRACOS 

X' is a compact subset of ~d, where d is an integer _> 1, and, without loss of 
generality, we may assume that X = [0, 1] d. Le t  0 be the space of real-valued 
continuous functions defined on 2d endowed with the sup-norm, and let X and Y 
be distributed as X1 and II1, respectively. It is assumed that for each x E X, the 
conditional distribution of Y, given X = x, is dominated by a a-finite measure, #x, 
and has a probability density function (p.d.f.) of known functional form involving 
O(x), where 0 is an element of O; that is, Y I X = x ,-~ f ( .  I x, O(x)). It is to be 
emphasized, however, that O(x) need not be the (conditional) expectation, as is 
usually the case in the literature. It may be, for instance, the median or a specific 
quantile or any other characteristic of the conditional p.d.f. 

Presently, our aim is that of estimating 0 by means of the principle of minimum 
distance, and calculate the rate of convergence of the proposed estimate to the true 
parameter in Ll-distance. Actually, this problem has been considered and resolved 
in Yatracos (1989a, 1992), under suitable regularity conditions, provided that, 
conditionally on X1 = Xl , . . . ,  X n  • Xn, the corresponding r.v.'s Yj, j = 1 , . . . ,  n 
are independent. The problem so framed includes as special cases the so-called 
classical regression problem, where O(x) = g ( Y  I X = x).  This latter problem 
has been discussed by several authors, including Devroye and Wagner (1980), 
Ibragimov and Khas'minskii (1980), and Stone (1980, 1982). In each case, 0 
belongs to subsets of O consisting of sufficiently "smooth" functions. Relevant 
is also the reference Yatracos (1985). An early rigorous usage of the principle of 
minimum distance goes back to Wolfowitz (1957). Beran (1977) employed the 
Hellinger distance for constructing estimates in parametric models. 

The basic difference between the problem discussed here and those resolved 
in Yatracos (1989a, 1992) is that the assumption of independence, which plays 
a fundamental role in the latter paper, is replaced by ~-mixing (see Definition 
2.1 (i) below), thus considerably enlarging the range of potential applications. It is 
known that many stochastic processes satisfy a ~-mixing condition. Such processes 
include, for example, m-dependent r.v.'s, Markov processes satisfying Doeblin's 
condition, and Markov processes which are geometrically ergodic. (Details may 
be found, for instance, in Roussas and Ioannides (1987), Examples 3.2, 3.3 and 
3.4.) To be sure, a preferable mode of mixing would be a-mixing (see Definition 
2.1 (ii) below), which is weaker than ~-mixing, and is satisfied by a wider class of 
important stochastic processes. Such issues are discussed in Chanda (1974), Pham 
and Tran (1985), and Pham (1986); see also Yoshihara (1992). Questions similar to 
the ones discussed here, but under c~-mixing, are currently under investigation; it 
is hoped we will be able to report on our findings some time in the near future. The 
case of estimating O(x) = g ( Y  I X = x),  under dependence, has been discussed 
rather extensively. Some references to this and related problems are Robinson 
(1986), Roussas (1990), and Tran (1989, 1990, 1993). For a general theory of 
estimation in abstract parameter spaces, the reader is referred to Le Cam (1986). 

The paper is organized as follows. In Section 2, the relevant concepts are 
defined, the assumptions under which the results of the paper are derived are 
formulated, and two auxiliary results, Lemmas 2.1 and 2.2, are stated. The main 
results of the paper, Theorem 3.1 followed by a corollary, are stated and proved 
in Section 3. A reference to Lemma 2.1 is given and the proof of Lemma 2.2 
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is presented in the Appendix. All limits are taken as n --~ ec unless otherwise 
explicitly stated. 

2. Definition, assumptions, and preliminary results 

For n = 1 , 2 , . . . ,  let Un be Nt-valued r.v.'s defined on a probability space 
(~2, A, P) ,  and for i, j with 1 _< i < j _< oc, let )c~ be the a-field induced by the 
r.v.'s U,,  n = i , i  + 1 , . . . , j .  

DEFINITION 2.1. (i) The not necessarily (strictly) s ta t ionary sequence {Un}, 
n _> 1, is said to be Q-mixing with mixing coefficient Q(n), if, as n -~ oc: 

IP(A N B) - P(A)P(B)I  ; } 
, k+n,k > 1 Q(n) I 0; sup P(A) A C .Tkl B E .T ~ _ = 

if the stochastic process is stationary, then the sup over k above is superfluous. 
(ii) The process is said to be a-mixing with mixing coefficient c~(n), if, as 

n --+ oO: 

sup{IP(A N B ) - P (A)P(  B)];A E .~'~,B E .T~+~,k >_ 1} = c~(n) $ O; 

once again, the sup over k is unnecessary, if the process is stationary. 

For Q-mixing sequences, the probability inequality stated below holds; this 
inequality is instrumental  in this paper. For its formulation, let ~ = ~(n) be 
positive integers tending to ec, and set p = #(n) = [~] ,  where Ix] denotes the 
integral part  of x. Thus, the # 's  are the largest integers for which 2~,# <_ n, # -~ ee 
and n 

LEMMA 2.1. Let Zn, n >_ 1, be real-valued r.v.'s centered at their expecta- 
tions and bounded by M,  and suppose that they are Q-mixing with mixing coefficient 

Q(n) such that ~n=lo¢ Q(n) def.= Q* < ec. Set Sn = ~1 ~=1~ Zi, and let C = 1 + 4Q*. 

Then, for all n >_ 1: 

(2.1) P(ISnt --> --< 611 + 2eU2Q(y)] # exp ( 
2C~r2 ' 

where O < c~ <_ - -  
n 

A discussion of such an inequality may be found, for example, in Roussas and 
Ioannides (1988). 

The set O C C(X),  whose elements 0 index the conditional p.d.f, o f Y  I X = x, 
f ( .  Ix,  O(x)), is defined as follows. 

DEFINITION 2.2. The set O is the collection of real-valued functions defined 
on [0, 1] a, d > 1 integer, which are uniformly bounded in the sup-norm and whose 
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p-th order mixed partial derivative 0 (p) (.) satisfies the following Lipschitz condi- 
tion: 

(2.2) IO(P)(x) - O(P)(y)l < L [ x -  yl ~, 0 < ~ < 1. 

By setting q = p+c~, the set O is also denoted by Oq,a and its elements are referred 
to as q-"smooth" functions. 

The set O, as defined above, supplied with the distance D induced by the 
sup-norm is totally bounded. That is to say, for any a > 0, there exists a finite 
number of balls, N(a) say, centered at some points of O and having radius a, whose 
union is O. Furthermore, it follows from Kolmogorov and Tikhomirov (1961) that 

the space (O, D) has Kohnogorov's entropy log 2 N(a~),  where N(a~) ~ 2 (1/~V/q , 
log 2 N(a~) is log of N(an)  with base 2, and N(a~) is the most economic number 
of balls as described above. The notation x~ ~ y~ signifies that both Xn = O(yn) 
and y~ = O(Xn). 

Let O be as above, recall that X = [0, 1] a, d >_ 1 integer, and let f ( .  I x, O(x)) 
be the p.d.f, as described in the Introduction. Also, let X 1 , . . . ,  X~ be the first n 
observations in the pairs (Xi, Yi), i = 1 , . . . ,  n, and let x l , . . . ,  x~ be their observed 
values. In the derivations to follow, it is required that these x~s are sufficiently 
dense in X. To make this precise, let ~ > O, c > O, and let Q~ be the the joint 
distribution of X 1 , . . . ,  Xn. Define the set Cn,a,x as follows: 

(2.3) Cn,d,X = { ( x l , . . . , x n )  e X n ; # { i  for which Ixi - xl < n -x} _> cn l-ad 

for every x E X}. 

Then proceed to gather together the assumptions under which the results in this 
paper are derived. 

ASSUMPTIONS. 
(A1) (i)For n = 1, 2 , . . . ,  {(Xn, Yn)} is a stationary sequence of observations, 

where the X~s are A'-valued and the Y~s are real-valued. It is further assumedthat  
the sequence is ~-mixing with mixing coefficient ~(n) of the form: ~(n) = O ( ~ )  
for some 0 < ~-~ --~ 0, and o~ E =I < 

(ii) The p.d.f, f ( .  I x,O(x)), x C A', as described in the Introduction, is of 
known functional form except that it depends on 0 C O. 

For any two p.d.f.'s f( .  I x ,s)  and f( .  I x, t) ,  consider the Ll-norm IIf(" ] 
x, s) - f ( .  I x, t)II defined by: 

(2.4) IIf(. I x, s) - f ( .  [ x,t)ll = ~ l f (y  l x, s) - f ( y  l x, t)ld#x. 

Then: 
(A2) The norm defined in (2.4) is ~ Is-t l .  More precisely, there exist (positive) 

constants C1 and C2, independent of x, such that: 

(2.5) C l l s - t l  <- I l l (  Ix,  s ) - f ( .  [ x,t)ll <_ C21s-  t] . 
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(A3) Let Cn,a,x be defined by (2.3), and let Qn be the joint distribution of 
X : , . . .  ,Xn. Then, for all sufficiently small c > 0 and a suitable 0 < A < 1/d: 

n (2.6) Q (C~,d,~,) ~ 1. 

Remark 2.1. Of the assumptions just made, Assumptions (A2) and (A3) 
deserve, perhaps, a comment. Assumption (A1) is nothing out of the ordinary. 
Condition (2.5) is not as strong as it may look at first glance. Concrete examples 
where such a condition holds, have been worked out in Yatracos (1989a), where the 
interested reader is referred to. There are seven such examples, where the p.d.f. 
f ( .  [ x, O(x)) ranges from normal to negative exponential to Poisson to geometric 
to binomial to uniform and negative exponential with only location parameter 
unknown. Condition (2.6) is, indeed, somewhat unusual although nowhere as 
strong as it may look. This point is illustrated by the fact that condition (2.6) is 
implied by familiar and mild conditions on the process. This is the content of the 
following lemma. 

LEMMA 2.2. Suppose that the mixing coefficient ~(n) is of the form qo(n) = 
O(n -(:+~)) for some ~ > O, and the r.v. X has a p.d.f, which is bounded from 
below in X (by M1 > O, say). Then condition (2.6) holds for all sufficiently small 
c > 0 and A = q/d(2q + d). 

The proof of this lemma is presented in the Appendix in order not to disrupt 
the flow of the main ideas involved. 

3. Formulation and proof of main results 

Before the main results of this paper are formulated, the minimum distance 
estimate of 0 has got to be defined, and for this purpose, we proceed as follows. 
The parameter space Oq,d is sup-norm totally bounded, and for an > 0, the most 

economical an-dense subset of it, On,q,~ has cardinality Nq,d(a~) ~.. 2 (:/~)d/~ (see 
Kolmogorov and Tikhomirov (1961)). In all that follows, let us simplify the nota- 
tion by writing O, On and N~ instead of Oq,d, O~,q,d and Nq,d(a~), respectively. 
Let On = {Onj,j = 1 , . . . ,N~} ,  and given Xi = x~, i = 1 , . . . , n ,  set 

(3.1) A ~ , e # = { y e ~ ; f ( y l x i ,  0k (x i ) )>f (y lx~ ,6e (x~) )} ,  l <_k < t <_N~. 

Let Y/be  the observation taken at xi, i = 1 , . . . ,  n, and set 

(3.2) 
n 

Sn;k ,~ ,m ~-" 
i = 1  

l <<k<g<_Nn,  m = 1 , . . . , N n ,  

where Px~,O,~(x,) is the conditional distribution of Yi, given X~ = xi, calculated 
under 0m (x/). 



272 GEORGE G. ROUSSAS AND YANNIS G. YATRACOS 

Next, maximize Sn;k,t,m over k, / and m, varying as above, and then define 

the minimum distance estimate t~ as that 0 which minimizes this maximum. More 
precisely, 0n is defined by the following relationship: 

(3.3) max } E[IA;,~,,  (Y~) - P~,~(x,)(A~,~#)] ;1 < k < g < Nn 
i=1 

[ { I ~ = I [ I A  n = min max - '~,~,~(Yi) - P~ o,~(x~)(Ak,e#)] ; 
n ' 

1 __< k < f_< Nn;1 _<m_< N ~ } ] .  

We may now formulate the main results of this paper; all logarithms will be 
with base 2, although this will not be denoted explicitly. 

THEOREM 3.1. Suppose Assumptions (A1)-(A3) are fulfilled, and let the 
parameter space Oq,d be as in Definition 2.2. Then the minimum distance estimate 
On defined by (3.3) is a uniformly weakly consistent estimate of ~ with rate of 
convergence an (the same as in the independent case), where 

( N~d()) 1/2 log aN n_q/(2q+d); 
a n ~ ~ 

convergence is to be understood in the Ll -nown sense, where, for any 0 and 0 in 
Oq,d: 

l i p  - 511 = / I O ( x )  - ~(x)ldx. 
dx 

COROLLARY 3.1. For the minimum distance estimate ~n defined in (3.3), it 
holds (the same as in the independent case): II~ (~) - O(s)ll <_ C*n-(q-[~])/(2q+d) in 
probability ( C* > 0 constant). 

PROOF OF THEOREM 3.1. Recall that X -- [0, 1] d and split up X into hy- 
percubes, Si, i = 1 , . . . ,  bn d with side length bn. Then 

(3.4) 

bn d 

Let X = (X1, . . . ,  Xn) and x = ( X l , . . .  , Xn). When X = x E Cn,d,~, let Ni 
be the number of the coordinates of x in Si, and let M = min{Ni; 1 < i < bnd}. 
Restricting attention to Si, we approximate ~n(x) and O(x) by their Taylor poly- 
nomial of order p around xj C Si. The remainder term will be, clearly, bounded 
in absolute value by C*b~ in both cases; here C* is a suitable positive constant. 
The constant C* will be replaced sequentially by another majorizing constant, 
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however, for the sake of simplicity, we will retain the notation C* throughout.  
Retain only the t e r m  IOn (x j)  - O(xj)l and repeat the same approximation around 
x for each of the remaining terms in the Taylor expansion. For s = (81, . . . ,  Sd), let 
[s] = sl  + " + Sd, and let 0 (~)(x0) denote the s-th order mixed partial derivative 
of 0 at x0. Then we obtain: 

(3.5) -~./~, 10~(x) - O(x)tdx 

F 

<_ c* Ib~÷d + b~lO~(xj) - O(xj)l 
i_ 

l <_[s]<<_p 

C*/b~n +d + b~10,~(x3) - _< O(xj)l 
I-  

l<[s]<p 0<[t]<p-s l 

< c* [b~n +~ + b~lO,~(xj) - 0(xj)l 

+ ~ b~] ~ 10(8)(x) - O(~)(x)ldx 1 . 
l_<[~]<p 

For each i with 1 < i < bn d, repeat (3.5) for M out of the Ni elements in Si and 
then add up the relations to obtain: 

MIIOn-OII<_C* Mbq+b~_, lOn(xj ) -O(xj ) l+M ~_, b~]ll@)-0<8>ll • 
j=t l<_[sl<p 

Since x E Cn,d,:~, it follows (by 2.3) that  M >_ cnb d. 
Thus, we have: 

(3.6) I lO,~-o l l<_c*  1 E l O n ( x J ) - ° ( x J ) l +  E b[nSlllO(n~)-O(S)ll " 
n j=l l_<[s]_<p 

By Proposition 2 in Yatracos (1989b), it follows that,  for 1 < [s] < p: 

(3.7) II0(~ ~) - 0(~)ll _< D13 ~q-[~] + O2yg[~]II0~ - 0ll, 

where D1, D2 and ~ are positive constants. Take y~ = / ) b n ,  w h e r e / )  is a large 
enough positive constant, and employ (3.6) and (3.7) to obtain: 

(3.8) lion - oil <_ c*  an + bqn + - IOr~(Xj) O~(xj) l  , n j = l  
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where 0m is the element of On closest to 0. Furthermore:  

(3.9) ! ~ I£(xj) - o.~(xj)l n j=l 

<_ Clan q- ~'2 max/ 1~'~ [ 1 
[In~_-i ~ [IAL,,,(Y~ ) -- Px,,O(.,)(A~,e,~) ; 

l < k < g < N n }  

(see relations (5) in Yatracos (19893)). By means of (3.6)-(3.9), one has: 

(3.10) II0n - Oll ~ c*  J an + b q 

n 

E[IAL, , , (Y i )  - P~,,O(x,)(A~,e,i) ] ; 
j=l 

l < k < g < N n  }1 
It is at this point, where the mixing assumption on the observables enters the 
picture. To this effect, let Px~,e(x), to be shortened to P~,  s tand for the conditional 

joint distr ibution of the Y(s, i = 1 , . . . ,  n, given X = x C Cn,g,~, and apply 
inequality (2.1) to the third te rm on the r ight-hand side of (3.10) with ~ / =  1 (see 
Lemma 2.1), to obtain: 

(3.11) 

< P~ max - [IAL,,,(Yi ) - 
Tt i=1 

1 _< k < g < N n } ~ £ n - - a n - b ~ ]  

n 
_< 6Nn2[1 + 2el/Zqo(u)] ~* exp [ -~ -~(en  - an - bq)21 

[ n  ] ___ 6x~[1 + 2 ~ / ~ ( ~ , ) ]  n/2" exp - g d ( e n  - a n  - b ~ )  2 , 

provided 

(3.12) ( 0  < ) ~ n  - -  a n  - -  b q < C/3u. 

The specification of the quantities # and u above is given in the paragraph just  
prior to Lemma 2.1, and inequality (3.12) implies the inequality ~n <_ C#/n in 
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(2.1) for all sufficiently large n. Also, the last inequality on the right-hand side in 
(3.11) follows by the fact tha t  # < n/2v.  

By the fact tha t  the expression on the r ight-hand side of (3.11) is independent 
of 0, it suffices to show tha t  this expression tends to 0. For simplicity, set 2e 1/2 = 

1 = C2- Prom (3.11), we have then to determine b~, an and c~ to satisfy Ct,  5-0 
(3.12) and also the convergence 

or, equivalently, 

(3.13) 

Nn2[1 -J- Cl~(l])] n/2r" exp[-C2n(¢~ - an - bq) 2] ~ 0, 

n log[1 + Cl(p(v)] --, c~, 02n(en - aN - b~) 2 - 2 logN~ - 2uu 

where C2 = C21oge = loge/2C. Take b~ = a¢/q, so tha t  bq~ = an. Then (3.13) 
becomes: 

(3.14) n log[1 + C]~(u)] --+ oo. O 2 n ( e n  - 2 a . )  2 - 2 log  N n  - 

From 1 + t < et(t > 0), we get log(1 + t) < t loge .  Apply this inequality for 
t = Clp(v)  to obtain: log[1 + Cl~(v)] < CI~(v)  where C1 = C1 log e = 2e 1/2 log e, 
and define v by: 

(3 .15 )  

so tha t  

v = k" log Nn ' 

( n ' ~ l / 2 ( n )  1/2 
1 k .  < < k logN~ -2 loggn  J P " 

for all sufficiently large n; k is a constant  to be specified below (see (3.20)). By 
means of (3.15) and the form of ~(n),  we have then: 

~n~ log[1 + c l~(v) ]  < 0.5 log N~ for all sufficiently large n. 

Then (3.14) is implied by: 

(3.16) C2rt(Cn - 2an) 2 - 2.51og Nn --+ oc. 

At this point, take aN and Sn as follows: 

lo q 

(3.17) 1/2 1/2 
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where p > 0 is to be determined below (see (3.18)). For an and ~n as above, the 

convergence in (3.16) becomes: 

/ l o g e  2 ) 
(C2p 2 - 2.5) logNn = ~ , - ~ - p  - 2.5 logN~ ~ oe, 

and this, actually, holds, provided 

(3.18) p > (5C/ log  e) 1/2. 

On the other hand, with the above choices of b~, an and e~, inequality (3.12) 
becomes: p(log N ~ / n )  1/2 <_ C/3u ,  and by way of (3.15), this inequality is implied 
by" p ( ~ ) l / 2  < _~c/~ ( ~ ) 1 / 2 ,  or 

" n - -  3 k  / n 

C 
(3.19) p < 3kl/2 . 

C Relations (3.18) and (3.19) are consistent, provided (5C/ log  e) 1/2 < 3-U~, or 

C log e 
(3.20) k < - -  

45 

To summarize: the quantities u, and an, e~, given by relations (3.15) and 
(3.17), respectively, satisfy inequality (3.12), and also cause the expression on the 
right-hand side in (3.11) to tend to 0. Then the proof is completed by writing 

P ( [ 1 0 n  - 011 _> = E Q ~ P ~ ( I I 0 ~  - 011 _> c* nlx = x ) I ( x  • Cn,d,A) 
+ gQ'~Pg(l[On - 011 _> c* nlX -- xDZ(x • C~,d,X) , 

and using assumption (A3). [] 

PaOOF OF COROLLARY 3.1. For [s] with 1 _< [s] _< p, we have as in (3.7): 

II0(n s) - O(S)II -< D17~ q-Is] + D27n Is] ]10n - 01], 

where D1, D2 and 7n are positive constants. But [[0~ - 011 _< C*n -q/(2q+d) in 
probability for some C* > 0, and 7~ may be chosen to be: 7n = n -1/(2q+d). Then, 
retaining the same notation C* for a majorizing constant, we obtain: 

[1 g ( s )  - -  O(S) lI ~-~ C*n-(q-[s])/(2q+d) in probability. [] 
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Appendix 

The purpose of this appendix is to establish Lemma 2.2 which plays a central 
role in the proof of the main result of the paper. The proof of the lemma is given 
for d = 1; its proof for d > 1 is quite analogous. Thus, let d = 1, so that X = [0, 1], 
and for each x E X, set: 

(A.1) Kni(x) : I ( x - -~n ,X+~n) (X i ) ,  i = 1 , . . .  ,n, K~(x) = E K~i(x); 
i=1  

here ~n = n-X, and recall that xi is the observed value of Xi, i = 1, . . .  ,n. With 
the above notation, observe that (2.5) may be rewritten as follows: 

(A.2) Cn, l , .~  = C n = { ( X l , . . .  ,Xn) E ,~n;Kn(X) )_ c~(~n f o r  every x E X} 

-- N { ( X l ' ' ' ' ' X n )  E X n ; K n ( x )  ~ C?~r~}. 
xEX 

The collection of the sets { ( x l , . . . ,  xn) E Xn; K~(x) > c n ~ } ,  x E X,  is discretized 
as follows: Let c > 0 to be specified below, and divide the unit interval [0, 1] into 
the intervals J~j, j = 1 , . . . ,  N defined by: 

(A.3) J~j=[( j -1 )e~n , jeS ,~] ,  j =  1 , . . . , N -  1, J ~ N = [ ( N - 1 ) ~ S n , 1 ] ;  

here N = 1/¢$n, if this expression is an integer, or N = [1/eS~] + 1 otherwise. At 
1 e+ln)," any rate, N <  ~ + 1 _ <  e Next, set: 

(A.4) Lnji = Ij,~j (x~), i = 1 . . . .  , n, j = 1 , . . . ,  N, Lnj = ~ Lnji. 
i=1  

Then the following relationship holds true. 

LEMMA A.1. Let Kn(x),  ~ ,  N and Lnj be defined by (A.1), (A.3) and 
(A.4), respectively. Then: 

N 

N ( L ~ j  > cn~n) C_ N [K~(x) >_ crt~n]. 
j = l  x E X  

PROOF. The intervals Jnj, j = 1 , . . . , N  have common length ~Sn except, 
perhaps, for the interval JnN whose length may be < ~Sn. To each x E A', assign 
the interval (x - (~n~ x Jr  (~n) of length 2(~n, and let c be less than one, (0 <)c < 1, 
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so that 26n > s6~. From the definition of K~(x) and L~j by (A.1) and (A.4), 
respectively, we have that, for each fixed j = 1 , . . . ,  N and every x E Jnj, Lnj is 
the number of x~s, i -- 1 , . . . ,  n which are in Jnj, and K~(x) is the number of same 
which are in ( x -  ~ ,  x + ~ ) .  By the restrictions that x C Jn j  and e < 1, it follows 
that L~j < K~(x). Therefore: 

(Lnj >_ cni~) C_ [Kn(x) >_ cnS~], x e J~j, j = 1, . . . ,  N. 

Hence: 
(Lnj ~ cn6n) C 

which implies that: 

(A.5) 

xE J,~j 

N N 

n(Lnj ~ Cn~n) C_ N 

j = 1 , . . . , N ,  

j=l 

On the other hand, clearly, 

(A.6) 

N >_ 

n [K~(x) > cn~]. 
xEX 

j = l  xEJnj 

N 

N N [gn (x )  ~ c?~(~n] = 
j = l  xCJ~j 

Relations (A.5) and (A.6) complete the proof. [] 

PROOF OF LEMMA 2.2 for d = 1. By (A.2) and Lemma A.1, it suffices to 
show that: 

Qn (Lnj >_ CnSn) 

(A.7) Qn Lnj < CnSn ~ O. 

1 or, equivalently, 

But: 

(A.8) [ J(Ln  < cnSn) 
--11 

N 
<-- ~ Qn(Lnj < C'D,(~n) 

j = l  

N 

= ~ Q"(Lnj - £Lnj < Cn~n -- CL,j) ,  
j=l 

and, for j = 1 , . . . ,  N - 1, and by means of the boundedness from below of the 
p.d.f, fx :  

ELnj -- nELnjl -= nP(X  C Jnj) = n j[j, fx( t)dt  >>_ nMlg~n = Mlan~n. 
J 
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Then: 

Cn~n - SLnj  < Cn~n - Mlcn6~ = -n~n(Ml~  - c) =- -finCh, 

where f l = M i c - c > 0  

MI~ by choosing c < 2 
The same arguments hold for j = N. Therefore (A.8) yields: 

(A.9) Qn (Lnj < Chin) 
N 

<- E Qn(L~J - ELnj < -~nSn)  
j-=l 

N 

<_ E Qn([Lnj - gLnj[ > 3n6n). 
j---=l 

However: 

Q'~(lnnj - g n n j l  > /3n~n)  = q n  E ( n n j i  - >/3~n  
i=1 

---- F(ISn[ >/3(~n), 

where: 

n 

(A.10) Sn = -1 y~,[ianj (Xi) _ $ijnj (Xi)]" 
n 

i=1  

By Lemma 2.1, applied with cn =/35n and iV/= 1, we get: 

(A.11) P(['S,~[>I35n) _< 611+ 2eU2cp(v)]t'exp ( • / 3 ~  2 )  

= 611 + 2 e l / 2 ~ ( p ) ]  # exp(-Conl-2X), 

where Co = 32/2C, provided n -:~ <_ C#/Bn; # and ~ are as specified in the 
paragraph prior to Lemma 2.1. Relation (A.9) becomes, by means of (A.10), 

c+1 Tt~ (A.11), the observation that N < ~ -  , and the proviso that p >_ ~n l - ) ' :  

I (A.12) Q~ (Lnj < cnOn) < [1 + 2el/2T(u)]" 
c 

• n ), exp(_C0nl-2),). 

It is shown below that the right-hand side in (A.12) tends to 0, for a suitable 
choice of A, subject to the requirement that # > ~-n 1-~. To this end, recall 
that the only requirements on ~, as used here, are that 0 < c < 1. Next, in 
reference to the constant c in (2.3), choose c < ~-~, for a fixed c as above, and 
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set/3 = Mxe - c(> 0). Also, take A = q/(2q + 1). Then the desired convergence is 
equivalent to: 

(A.13) 
C3 nl/(2q+l) - A l o g n -  #log[1 + Cl~(b')] ----+ oo, 

Ca = Co log e = 3 z log e/2C. 

At this point, choose u = [knq/(2q+l)], from some k > 0 (see (A.16)  below), so 
tha t  lu - -  < 2n--q/(2q+l) for all sufficiently large n. Also, 

log[1 + Cl~(/])]  ~ (C1 log e)~9(/.') ~- (2e 1/2 log e)cfl(u), 

and, by assumption and for some C4 > 0: 

~(U) ~ C41] -1 -5  ~ C4 n -q(l+5)/(2q+1). 

Therefore (A.13) is implied by: 

(A.14) 

C3n 1/(2z+1) - A logn  - C5#n -q(l+~)/(2q+l) ---* oo, 

C5 = C4(2el/21og e) ( ~ )  1+5 

n for some 0 < #* ~ 1, and hence # > From # = [2@] we have # = # n ' ~  

~kn (q+W(2q+l). Then (A.14) is implied by: 

or 

C3 nl/(2q+l) -- Alogn - C61.t*n (1-Sq)/(2q+l) ~ (x), 66 = C5/2k, 

n 1/(2q+1) [C3 - A(log n)n -1/(2q+1) - C6#*n -5q/(2q+l)] ~ ~ ,  

which is true. It remains to specify the range of k for which the inequality 
# _> ~ n  1-)~ is satisfied for the choices of A, u and # made above. From the 

definition of u, we have u -- u*kn z/(2q+l) for some 0 < u~ --+ 1. Therefore 
# = (#~/2ku*)n (q+l)/(2q+l), and the inequality # >_ ~ n  1-~ becomes: 

I t* rt(q+l)/(2q+l ) :> ~ n  1-A. (A.15) 
2ku* C 

This inequality is satisfied by taking A = q/(2q + 1). For this choice of A, let 
n ~ ce in (A.15) in order to obtain the following requirement for k, namely: 

(A.16) k < C/2/3. 

To summarize: for sufficiently small c > 0, A = q/(2q + 1), and u and # as 
chosen above, the r ight-hand side in (A.12) converges to 0, which implies (A.7). 
The proof of the lemma is completed. [] 
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