Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/9916
Τίτλος: A fast algorithm for non-negativity model selection
Συγγραφείς: Gatu, Cristian 
Kontoghiorghes, Erricos John 
metadata.dc.contributor.other: Κοντογιώργης, Ερρίκος
Major Field of Science: Social Sciences
Field Category: Economics and Business
Λέξεις-κλειδιά: Branch-and-bound algorithms;Subset selection;Non-negative least squares
Ημερομηνία Έκδοσης: 2013
Πηγή: Statistics and Computing, 2013, vol. 23, pp. 403-411
Volume: 23
Start page: 403
End page: 411
Περιοδικό: Statistics and Computing 
Περίληψη: An efficient optimization algorithm for identifying the best least squares regression model under the condition of non-negative coefficients is proposed. The algorithm exposits an innovative solution via the unrestricted least squares and is based on the regression tree and branch-and-bound techniques for computing the best subset regression. The aim is to filling a gap in computationally tractable solutions to the non-negative least squares problem and model selection. The proposed method is illustrated with a real dataset. Experimental results on real and artificial random datasets confirm the computational efficacy of the new strategy and demonstrates its ability to solve large model selection problems that are subject to non-negativity constrains.
URI: https://hdl.handle.net/20.500.14279/9916
ISSN: 09603174
DOI: 10.1007/s11222-012-9318-8
Rights: © Springer
Type: Article
Affiliation: Cyprus University of Technology 
University of Nicosia 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

1
checked on 9 Νοε 2023

Page view(s)

421
Last Week
0
Last month
30
checked on 14 Μαρ 2025

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα