Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/9441
Τίτλος: | Artificial neural networks for the generation of a conductivity map of the ground | Συγγραφείς: | Kalogirou, Soteris A. Florides, Georgios A. Pouloupatis, Panayiotis Christodoulides, Paul Joseph-Stylianou, Josephina |
Major Field of Science: | Engineering and Technology | Field Category: | Environmental Engineering | Λέξεις-κλειδιά: | Artificial neural networks;Boreholes;Geothermal maps;Ground conductivity | Ημερομηνία Έκδοσης: | 2015 | Πηγή: | Renewable Energy, 2015, vol. 77, pp. 400-407. | Volume: | 77 | Start page: | 400 | End page: | 407 | Περιοδικό: | Renewable Energy | Περίληψη: | In this paper a neural network is used for the generation of a contour map of the ground conductivity in Cyprus. Archived data of thermal conductivity of ground recorded at 41 boreholes are used for training a multiple hidden layer neural network with feedforward architecture. The correlation coefficient obtained between the predicted and training data set is 0.9657, indicating an accurate mapping of the data. The validation of the network was performed using an unknown dataset. The correlation coefficient for the unknown cases was 0.9553. In order to broaden the database, the patterns used for the validation of the technique were embedded into the training data set and a new training of the network was performed. The correlation coefficient value for this case was equal to 0.9718. A 10×10km grid is then drawn over a detailed topographic map of Cyprus and the various input parameters were recorded for each grid point. This information was then supplied to the trained network and by doing so ground conductivity was predicted at each grid-point. This map will be a helpful tool for engineers in designing geothermal heat pump systems in Cyprus. | URI: | https://hdl.handle.net/20.500.14279/9441 | ISSN: | 09601481 | DOI: | 10.1016/j.renene.2014.12.033 | Rights: | © Elsevier | Type: | Article | Affiliation: | Cyprus University of Technology Ministry of Agriculture, Rural Development and Environment, Cyprus |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
19
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
20
15
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
510
Last Week
1
1
Last month
3
3
checked on 30 Ιαν 2025
Google ScholarTM
Check
Altmetric
Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons