Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/8470
Τίτλος: | AI-based actuator/sensor fault detection with low computational cost for industrial applications | Συγγραφείς: | Michail, Konstantinos Deliparaschos, Kyriakos M. Tzafestas, Spyros G. Zolotas, Argyrios C. |
metadata.dc.contributor.other: | Δεληπαράσχος, Κυριάκος Μιχαήλ, Κωνσταντίνος |
Major Field of Science: | Engineering and Technology | Field Category: | Electrical Engineering - Electronic Engineering - Information Engineering | Λέξεις-κλειδιά: | Actuator/sensor fault detection (FD);Artificial intelligence (AI);Electromagnetic suspension (EMS);Fault tolerant control (FTC);Loop-shaping robust control design;Maglev trains;Neural networks (NNs);Reconfigurable control | Ημερομηνία Έκδοσης: | Ιαν-2016 | Πηγή: | IEEE Transactions on Control Systems Technology, 2016, vol. 24, nο 1, pp. 293-301 | Volume: | 24 | Issue: | 1 | Start page: | 293 | End page: | 301 | Περιοδικό: | IEEE Transactions on Control Systems Technology | Περίληψη: | A low computational cost method is proposed for detecting actuator/sensor faults. Typical model-based fault detection (FD) units for multiple sensor faults require a bank of estimators [i.e., conventional Kalman estimators or artificial intelligence (AI)-based ones]. The proposed FD scheme uses an AI approach for developing of a low computational power FD unit abbreviated as iFD. In contrast to the bank-of-estimators approach, the proposed iFD unit employs a single estimator for multiple actuator/sensor FD. The efficacy of the proposed FD scheme is illustrated through a rigorous analysis of the results for a number of sensor fault scenarios on an electromagnetic suspension system. | URI: | https://hdl.handle.net/20.500.14279/8470 | ISSN: | 15580865 | DOI: | 10.1109/TCST.2015.2422794 | Rights: | © IEEE | Type: | Article | Affiliation: | Cyprus University of Technology SignalGeneriX Ltd University of Dublin National Technical University Of Athens University of Lincoln |
Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
36
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
20
26
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s)
439
Last Week
0
0
Last month
3
3
checked on 3 Φεβ 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα