Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/8470
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Michail, Konstantinos | - |
dc.contributor.author | Deliparaschos, Kyriakos M. | - |
dc.contributor.author | Tzafestas, Spyros G. | - |
dc.contributor.author | Zolotas, Argyrios C. | - |
dc.contributor.other | Δεληπαράσχος, Κυριάκος | - |
dc.contributor.other | Μιχαήλ, Κωνσταντίνος | - |
dc.date.accessioned | 2016-05-11T11:48:44Z | - |
dc.date.available | 2016-05-11T11:48:44Z | - |
dc.date.issued | 2016-01 | - |
dc.identifier.citation | IEEE Transactions on Control Systems Technology, 2016, vol. 24, nο 1, pp. 293-301 | en_US |
dc.identifier.issn | 15580865 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/8470 | - |
dc.description.abstract | A low computational cost method is proposed for detecting actuator/sensor faults. Typical model-based fault detection (FD) units for multiple sensor faults require a bank of estimators [i.e., conventional Kalman estimators or artificial intelligence (AI)-based ones]. The proposed FD scheme uses an AI approach for developing of a low computational power FD unit abbreviated as iFD. In contrast to the bank-of-estimators approach, the proposed iFD unit employs a single estimator for multiple actuator/sensor FD. The efficacy of the proposed FD scheme is illustrated through a rigorous analysis of the results for a number of sensor fault scenarios on an electromagnetic suspension system. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | IEEE Transactions on Control Systems Technology | en_US |
dc.rights | © IEEE | en_US |
dc.subject | Actuator/sensor fault detection (FD) | en_US |
dc.subject | Artificial intelligence (AI) | en_US |
dc.subject | Electromagnetic suspension (EMS) | en_US |
dc.subject | Fault tolerant control (FTC) | en_US |
dc.subject | Loop-shaping robust control design | en_US |
dc.subject | Maglev trains | en_US |
dc.subject | Neural networks (NNs) | en_US |
dc.subject | Reconfigurable control | en_US |
dc.title | AI-based actuator/sensor fault detection with low computational cost for industrial applications | en_US |
dc.type | Article | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.collaboration | SignalGeneriX Ltd | en_US |
dc.collaboration | University of Dublin | en_US |
dc.collaboration | National Technical University Of Athens | en_US |
dc.collaboration | University of Lincoln | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.journals | Subscription | en_US |
dc.review | Peer Reviewed | en |
dc.country | Cyprus | en_US |
dc.country | Ireland | en_US |
dc.country | Greece | en_US |
dc.country | United Kingdom | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.identifier.doi | 10.1109/TCST.2015.2422794 | en_US |
dc.dept.handle | 123456789/134 | en |
dc.relation.issue | 1 | en_US |
dc.relation.volume | 24 | en_US |
cut.common.academicyear | 2015-2016 | en_US |
dc.identifier.spage | 293 | en_US |
dc.identifier.epage | 301 | en_US |
item.openairetype | article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0003-0618-5846 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.journal.journalissn | 1063-6536 | - |
crisitem.journal.publisher | IEEE | - |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
36
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
20
26
Last Week
0
0
Last month
0
0
checked on Oct 29, 2023
Page view(s) 50
432
Last Week
0
0
Last month
0
0
checked on Dec 3, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.