Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/8209
Τίτλος: Infinite markov-switching maximum entropy discrimination machines
Συγγραφείς: Chatzis, Sotirios P. 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: Bayesian nonparametrics;Dirichlet process models;Maximum entropy discrimination
Ημερομηνία Έκδοσης: 2013
Πηγή: Journal of Machine Learning Research: Workshop and Conference Proceedings, 2013, vol. 28, no. 3, pp. 729-737
Volume: 28
Issue: 3
Start page: 729
End page: 737
Link: http://www.jmlr.org/proceedings/papers/v28/chatzis13.pdf
Περιοδικό: Journal of Machine Learning Research 
Περίληψη: In this paper, we present a method that combines the merits of Bayesian nonparametrics, specifically stick-breaking priors, and largemargin kernel machines in the context of sequential data classification. The proposed model employs a set of (theoretically) infinite interdependent large-margin classifiers as model components, that robustly capture local nonlinearity of complex data. The employed large-margin classifiers are connected in the context of a Markov-switching construction that allows for capturing complex temporal dynamics in the modeled datasets. Appropriate stick-breaking priors are imposed over the component switching mechanism of our model to allow for data-driven determination of the optimal number of component large-margin classifiers, under a standard nonparametric Bayesian inference scheme. Efficient model training is performed under the maximum entropy discrimination (MED) framework, which integrates the large-margin principle with Bayesian posterior inference. We evaluate our method using several real-world datasets, and compare it to state-of-the-art alternatives.
Description: Paper presented at 30th International Conference on Machine Learning, 2013, Atlanta, USA, 16 – 21 June.
URI: https://hdl.handle.net/20.500.14279/8209
ISSN: 19387228
Rights: © The author(s)
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Chatzis.pdf2.88 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

470
Last Week
0
Last month
2
checked on 4 Φεβ 2025

Download(s)

109
checked on 4 Φεβ 2025

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα