Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/8209
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chatzis, Sotirios P. | - |
dc.date.accessioned | 2016-01-18T12:29:49Z | - |
dc.date.available | 2016-01-18T12:29:49Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Journal of Machine Learning Research: Workshop and Conference Proceedings, 2013, vol. 28, no. 3, pp. 729-737 | en_US |
dc.identifier.issn | 19387228 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14279/8209 | - |
dc.description | Paper presented at 30th International Conference on Machine Learning, 2013, Atlanta, USA, 16 – 21 June. | en_US |
dc.description.abstract | In this paper, we present a method that combines the merits of Bayesian nonparametrics, specifically stick-breaking priors, and largemargin kernel machines in the context of sequential data classification. The proposed model employs a set of (theoretically) infinite interdependent large-margin classifiers as model components, that robustly capture local nonlinearity of complex data. The employed large-margin classifiers are connected in the context of a Markov-switching construction that allows for capturing complex temporal dynamics in the modeled datasets. Appropriate stick-breaking priors are imposed over the component switching mechanism of our model to allow for data-driven determination of the optimal number of component large-margin classifiers, under a standard nonparametric Bayesian inference scheme. Efficient model training is performed under the maximum entropy discrimination (MED) framework, which integrates the large-margin principle with Bayesian posterior inference. We evaluate our method using several real-world datasets, and compare it to state-of-the-art alternatives. | en_US |
dc.format | en_US | |
dc.language.iso | en | en_US |
dc.relation.ispartof | Journal of Machine Learning Research | en_US |
dc.rights | © The author(s) | en_US |
dc.subject | Bayesian nonparametrics | en_US |
dc.subject | Dirichlet process models | en_US |
dc.subject | Maximum entropy discrimination | en_US |
dc.title | Infinite markov-switching maximum entropy discrimination machines | en_US |
dc.type | Article | en_US |
dc.link | http://www.jmlr.org/proceedings/papers/v28/chatzis13.pdf | en_US |
dc.collaboration | Cyprus University of Technology | en_US |
dc.subject.category | Electrical Engineering - Electronic Engineering - Information Engineering | en_US |
dc.journals | Open Access | en_US |
dc.review | Peer Reviewed | en |
dc.country | Cyprus | en_US |
dc.subject.field | Engineering and Technology | en_US |
dc.publication | Peer Reviewed | en_US |
dc.dept.handle | 123456789/134 | en |
dc.relation.issue | 3 | en_US |
dc.relation.volume | 28 | en_US |
cut.common.academicyear | 2012-2013 | en_US |
dc.identifier.spage | 729 | en_US |
dc.identifier.epage | 737 | en_US |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | Department of Electrical Engineering, Computer Engineering and Informatics | - |
crisitem.author.faculty | Faculty of Engineering and Technology | - |
crisitem.author.orcid | 0000-0002-4956-4013 | - |
crisitem.author.parentorg | Faculty of Engineering and Technology | - |
crisitem.journal.journalissn | 1533-7928 | - |
crisitem.journal.publisher | MIT Press | - |
Appears in Collections: | Άρθρα/Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Chatzis.pdf | 2.88 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
470
Last Week
0
0
Last month
2
2
checked on Feb 1, 2025
Download(s)
103
checked on Feb 1, 2025
Google ScholarTM
Check
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.