Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/4470
Τίτλος: Optimum preventative maintenance strategies using genetic algorithms and Bayesian updating
Συγγραφείς: Tantele, Elia 
Onoufriou, Toula 
Major Field of Science: Engineering and Technology
Field Category: Civil Engineering
Λέξεις-κλειδιά: Preventative maintenance effectiveness;Corrosion initiation;Reinforced concrete bridges;Optimisation;Genetic algorithm;Bayesian updating
Ημερομηνία Έκδοσης: 8-Οκτ-2009
Πηγή: Ships and Offshore Structures, 2009, vol. 4, no 3, pp. 299-306
Volume: 4
Issue: 3
Start page: 299
End page: 306
Περιοδικό: Ships and Offshore Structures 
Περίληψη: Preventative maintenance (PM) includes proactive maintenance actions that aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economic grounds because it can extend the life of bridges and avoid the need for unplanned essential maintenance. Due to the high importance of the effective integration of PM measures in the maintenance strategies of bridges, the authors have developed an optimisation methodology based on genetic algorithm (GA) principles, which links the probabilistic effectiveness of various PM measures with their costs in order to develop optimum PM strategies. To further improve the reliability of estimating the degree of deterioration of an element, which is a key element in predicting optimum PM strategies using the GA methodology, Bayesian updating is utilised. The use of Bayesian updating enables the updating of the probability of failure based on data from site inspection or laboratory experiments and the adjustment, if necessary, of the timing of subsequent PM interventions. For the case study presented in this paper, the probability of failure is expressed as the probability of corrosion initiation of a reinforced concrete element due to de-icing salt.
URI: https://hdl.handle.net/20.500.14279/4470
ISSN: 1754212X
DOI: 10.1080/17445300903247162
Rights: © Taylor & Francis.
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations

8
checked on 9 Νοε 2023

WEB OF SCIENCETM
Citations 50

3
Last Week
0
Last month
0
checked on 29 Οκτ 2023

Page view(s) 20

516
Last Week
0
Last month
1
checked on 22 Δεκ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα