Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/4470
Τίτλος: | Optimum preventative maintenance strategies using genetic algorithms and Bayesian updating | Συγγραφείς: | Tantele, Elia Onoufriou, Toula |
Major Field of Science: | Engineering and Technology | Field Category: | Civil Engineering | Λέξεις-κλειδιά: | Preventative maintenance effectiveness;Corrosion initiation;Reinforced concrete bridges;Optimisation;Genetic algorithm;Bayesian updating | Ημερομηνία Έκδοσης: | 8-Οκτ-2009 | Πηγή: | Ships and Offshore Structures, 2009, vol. 4, no 3, pp. 299-306 | Volume: | 4 | Issue: | 3 | Start page: | 299 | End page: | 306 | Περιοδικό: | Ships and Offshore Structures | Περίληψη: | Preventative maintenance (PM) includes proactive maintenance actions that aim to prevent or delay a deterioration process that may lead to failure. This type of maintenance can be justified on economic grounds because it can extend the life of bridges and avoid the need for unplanned essential maintenance. Due to the high importance of the effective integration of PM measures in the maintenance strategies of bridges, the authors have developed an optimisation methodology based on genetic algorithm (GA) principles, which links the probabilistic effectiveness of various PM measures with their costs in order to develop optimum PM strategies. To further improve the reliability of estimating the degree of deterioration of an element, which is a key element in predicting optimum PM strategies using the GA methodology, Bayesian updating is utilised. The use of Bayesian updating enables the updating of the probability of failure based on data from site inspection or laboratory experiments and the adjustment, if necessary, of the timing of subsequent PM interventions. For the case study presented in this paper, the probability of failure is expressed as the probability of corrosion initiation of a reinforced concrete element due to de-icing salt. | URI: | https://hdl.handle.net/20.500.14279/4470 | ISSN: | 1754212X | DOI: | 10.1080/17445300903247162 | Rights: | © Taylor & Francis. | Type: | Article | Affiliation: | Cyprus University of Technology | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
8
checked on 9 Νοε 2023
WEB OF SCIENCETM
Citations
50
3
Last Week
0
0
Last month
0
0
checked on 29 Οκτ 2023
Page view(s) 20
516
Last Week
0
0
Last month
1
1
checked on 22 Δεκ 2024
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα