Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/33364
Τίτλος: Archaeological Surface Ceramics Detection Using Low-Altitude Images Based on Weak Learners
Συγγραφείς: Argyrou, Argyro 
Agapiou, Athos 
Major Field of Science: Engineering and Technology
Field Category: Other Engineering and Technologies
Λέξεις-κλειδιά: Archaeology;Machine Learning (ML);Object detection;Classification;Earth Observation
Ημερομηνία Έκδοσης: 20-Οκτ-2024
Πηγή: Poster presented at IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2024), Athens, Greece, October 20–24, 2024.
Project: Research and Innovation Knowledge Centre for Engineering in Heritage (CONNECTING) 
Conference: IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) 
Περίληψη: Over the past decade, remote sensing sensors and their products have been increasingly utilized for archaeological science and cultural heritage studies. In our study, we explored the application of several supervised machine learning classifiers using red-green-blue (RGB) and multispectral high-resolution drone imagery to evaluate their performance towards semi-automatic surface ceramic detection. The results indicate that using low-altitude remote sensing sensors and advanced image-processing techniques can be incredibly innovative in archaeological research. However, our study also revealed existing research limitations in detecting surface ceramics, which significantly impact the detection accuracy. Therefore, detecting surface ceramics using RGB or multi-spectral drone imagery should be reconsidered as an 'imbalanced data distribution' problem. A new and robust methodology needed to be developed to address this "accuracy paradox" of imbalanced data samples and optimise archaeological surface ceramic detection. Our study aimed to fill a gap in the literature by blending AI methodologies for non-uniformly distributed classes.
URI: https://hdl.handle.net/20.500.14279/33364
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Poster
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
Archaeological Surface.pdfPaper217.21 kBAdobe PDFΔείτε/ Ανοίξτε
Poster.pdfPoster1.11 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

12
checked on 21 Δεκ 2024

Download(s)

10
checked on 21 Δεκ 2024

Google ScholarTM

Check


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons