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ABSTRACT 

 

Over the past decade, remote sensing sensors and their 

products have been increasingly utilized for archaeological 

science and cultural heritage studies. In our study, we 

explored the application of several supervised machine 

learning classifiers using red-green-blue (RGB) and 

multispectral high-resolution drone imagery to evaluate their 

performance towards semi-automatic surface ceramic 

detection. The results indicate that using low-altitude remote 

sensing sensors and advanced image-processing techniques 

can be incredibly innovative in archaeological research. 

However, our study also revealed existing research 

limitations in detecting surface ceramics, which significantly 

impact the detection accuracy. Therefore, detecting surface 

ceramics using RGB or multi-spectral drone imagery should 

be reconsidered as an 'imbalanced data distribution' problem. 

A new and robust methodology needed to be developed to 

address this "accuracy paradox" of imbalanced data samples 

and optimise archaeological surface ceramic detection. Our 

study aimed to fill a gap in the literature by blending AI 

methodologies for non-uniformly distributed classes. 

 

Index Terms— Archaeology, Machine Learning (ML), 

Object detection, Classification, Earth Observation 

 

1. INTRODUCTION 

 

In recent years, remote sensing science has been 

progressively applied to support archaeological research 

[1,2]. Technological innovation and improvements of space-

based sensors, in terms of their spatial and spectral resolution, 

and the adoption of open access and free distribution of 

satellite datasets (see Landsat and Sentinel products), have 

motivated the further use of space-based remote sensing 

applications [3]. In addition, the democratization of low-

altitude systems, with drones at relevant low costs, has been 

widely adopted in the last decade in archaeological research, 

mainly for documentation purposes [4]. At the same time, 

archaeological computational approaches have shifted from 

desktop-based applications to cloud-based approaches 

blended with advanced AI algorithms [5]. As these changes 

have taken place in a relevant short period (a decade), one can 

argue that we are still in the beginning of a new era of so-

called “remote sensing archaeology”. 

Orengo and Garcia-Molsosa in 2019 [5] demonstrated 

the great potential using the Google Earth Engine big data 

cloud platform, for detecting archaeological potsherds based 

on the acquisition of high-resolution UAVs red, green, blue 

(RGB) images and the application of random forest 

classification. Their work is pioneer as this was the very first 

example aiming to advance low altitude technologies with 

remote sensing methodologies for archaeological surface 

detection. Their work was based on a supervised Random 

Forest classification using training samples from the high-

resolution orthophoto of their area of interest. Recently, in 

2021, the authors also improved their previous work by 

developing a novel framework for detecting surface pottery, 

showing that low-altitude remote sensing sensors (e.g., 

Unmanned Aerial Vehicles, UAVs) can provide significant 

outcomes. 

2. CASE STUDY 

 

The purpose of this research is to explore how Artificial 

Intelligence (AI) algorithms can be used to classify and detect 

archaeological surface ceramics using low-altitude sensor 

cameras and how an interdisciplinary approach between 

Remote Sensing and Artificial intelligence can overcome the 

'accuracy paradox' phenomenon of working with imbalanced 

remote sensing data. 

When we classify data, we usually consider a model with 

higher accuracy the best. However, this may not be the case 

when dealing with imbalanced data. Imbalanced data sets 

have a disproportionate number of samples in different 

classes. When we use standard classifier learning algorithms 

to classify data with imbalanced class distribution, their 

performance can be greatly affected. 

Various factors can affect the modeling of minority 

classes, including small sample size, separability, and the 

presence of sub-concepts within a class. To tackle this 

problem, this study employs an interdisciplinary 

methodology combining Remote Sensing with Artificial 

Intelligence. The goal is to address the paradoxical effect 

caused by these factors. 

 

 



3. METHODOLOGY 

 

This research methodology involves using Artificial 

Intelligence algorithms to classify archaeological ceramic 

surfaces. The images are captured through low-altitude 

sensor cameras. We used two drones to acquire drone-based 

images of the selected area of interest. Two flight campaigns 

were performed using the DJI Phantom 4 Pro system (spectral 

bands: Blue (B): 468 nm ± 47 nm; Green (G): 532 nm ± 58 

nm; Red (R): 594 nm ± 32.5 nm), and the DJI P4 Multi-

spectral system (spectral bands: Blue (B): 450 nm ± 16 nm; 

Green (G): 560 nm ± 16 nm; Red (R): 650 nm ± 16 nm; Red 

edge (RE): 730 nm ± 16 nm and Near-infrared (NIR): 840 nm 

± 26 nm). The process is illustrated in diagram 1 below. 

 

ArcGIS Pro software's Image Analyst tools were used for 

computational processing. One of the main challenges faced 

was dealing with imbalanced remote sensing data. To 

overcome this, the Training Samples Manager in the 

Classification Tools was used to create a training model 

comprising of three classes - 'ceramics' (class 1), 'soil' (class 

2), and 'crops' (class 3). To create the initial training data, 

polygons were drawn on top of visible ceramic fragments, 

bare soil, and crops. The values of the pixels delimited by the 

polygons in each composite band were assigned to each class. 

Finally, four supervised classifiers - K-Nearest Neighbour 

(KNN), Random Forest (RF), Support Vector Machine 

(SVM), and the Maximum Likelihood algorithm were 

applied to the data. The maximum number of samples per 

class was set to 500 for the SVM, RF, and KNN classifiers, 

as this was deemed sufficient to ensure optimal results. The 

first step in the process was to classify the composite images 

using a trained classifier. Then, the classification was 

compared to the orthomosaic to assess its accuracy. To do 

this, randomly sampled points were created for post-

classification accuracy assessment. The Accuracy 

Assessment Points tool from the Image Analyst tools 

evaluated all classification results. Randomly distributed 

samples were created for each class with an equal number of 

samples and then compared with the classification results. 

Based on the confusion matrix per classifier, the user's and 

producer's accuracy for each class and the overall kappa 

index were calculated. This procedure was implemented for 

RGB and multispectral drone images, and all results were 

extracted and evaluated on a local computer. Many standard 

classifier learning algorithms assume an equal distribution of 

classes and misclassification costs. However, these 

algorithms may not perform well when used on imbalanced 

data sets. An imbalanced data set is one where the class 

proportions are skewed, where the majority class has a larger 

proportion of samples than the minority class (in this case, 

archaeological surface ceramics).  

In data analysis, it is often observed that the distribution 

of data in an imbalanced dataset is heavily skewed towards 

one class. This can pose a significant challenge while 

modelling minority classes, such as ceramics. Several factors 

can influence the modelling of such classes, including small 

sample sizes, separability, and the presence of sub-concepts. 

Small sample sizes lead to a lack of representation of the 

minority class, making it difficult to train a model that can 

accurately classify them. Separability refers to the degree to 

which the minority class is distinct from the majority class. If 

the minority class is poorly separable from the majority class, 

it can result in a higher misclassification rate. Lastly, sub-

concepts within the minority class can pose a challenge, as 

different sub-concepts may require different models to be 

accurately classified. 

Based on the results of our experiment, it appears that the 

issue stems from an imbalance between the surface ceramics 

and the surrounding environment, which includes the soil and 

crops. To dive deeper into this problem, we require more 

accurate classification results and effective tools to manage 

imbalanced data or update learning algorithms. The literature 

offers various solutions, such as rebalancing the class 

distribution by resampling the data space at the data level or 

modifying existing classifier learning algorithms to improve 

comprehension of the small class of ceramics at the 

algorithmic level. Binary classification problems can be 

challenging for boosting algorithms when dealing with 

imbalanced data. However, boosting algorithms are 

frequently utilized to enhance the prediction capabilities of 

weak learners and transform them into strong learners. 

Among the three primary boosting algorithms, AdaBoost, or 

Adaptive Boost, is commonly employed as an Ensemble 

Method in Machine Learning. The fundamental idea behind 

AdaBoost is to build a model and assign identical weights to 

all data points. It subsequently assigns higher weights to 

incorrectly classified points, and the following model 

emphasises those points with higher weights. This training 

process continues until a lower error rate is achieved. The 

basic steps of the research methodology are illustrated in 

diagram 2 below. 

Diagram 1: Research methodology. 



 

 

Diagram 2: Further analysis methodology and tools to treat 

imbalanced data. 

4. PRELIMINARY RESULTS 

 

The classifiers used for this study were trained using image 

samples for three classes: 'ceramics' (class 1), 'soil' (class 2), 

and 'crops' (class 3). The overall accuracy was estimated 

using randomly distributed testing pixels to evaluate their 

performance. Accuracy was calculated as the proportion of 

correctly predicted samples in the test set divided by the total 

predictions made on the test set. 

Accuracy = Correct Predictions / Total Predictions 

The accuracy for class 2 and class 3 (soil and crop) was 

estimated to be approximately 80%, while for class 1 

(ceramics), a relatively low accuracy was reported for all four 

classifiers. The question was raised about how many testing 

pixels should be selected to ensure that the assessed accuracy 

was a reliable estimate of the actual accuracy. Would a larger 

sample of testing pixels give a more realistic estimate? What 

should the appropriate number of samples be? 

According to [7], the number of samples required for an 

accuracy of 90% is 225, while 119 testing pixels are required 

for a 95% accuracy. These numbers assume that the classes 

follow a normal distribution, where a set of measurements, 

for instance, the mean, is distributed around the centre of 

these measurements. 

Using 225 testing samples, the accuracy of all classifiers 

was estimated again. ArcGIS Pro randomly created 225 

sampled points for post-classification accuracy assessment 

using the Image Analyst Toolbox. The sampling scheme was 

set to randomly distributed points, in which each class had the 

same number of points. A "Ground Truth" field and a 

"Classified" field were created in the final attribute table. 

Finally, we manually updated the Ground Truth field by 

changing or identifying the set of points and compared these 

fields using the Compute Confusion Matrix tool. 

The ceramics class results showed a wide range of 

accuracy, with RGB images ranging from 12% to 24% and 

multispectral images ranging from 23% to 61%, as illustrated 

in Table 1 below. However, this presents a problem with the 

misclassification of minority classes. Classifiers tend to 

accurately predict the majority class while being ineffective 

in predicting the minority class. Our research proposes a 

methodology to detect surface ceramics using low-altitude 

multispectral and RGB cameras based on weak learners to 

address this issue. 

Table 1: Ceramics Accuracy after supervised classification. 
 

KNN MAX_Likelihood SVM RF 

RGB 13% 12% 24% 15% 

Multispectral 23% 52% 61% 31% 

 

5. ACCURACY IMPROVEMENTS 

 

Research shows that detecting surface ceramics using low-

altitude sensors can yield significant results. However, there 

are limitations in accurately detecting the minority class of 

ceramics, which can impact the overall detection accuracy. 

To address this issue, we approach ceramic surface detection 

as an "imbalanced data distribution" problem. In previous 

studies, a problem with misclassifying minority classes, such 

as archaeological ceramics, was identified. Despite achieving 

high accuracy, the actual detection rate for the ceramic class 

remained low. This is because classifiers predict classes with 

extensive data more accurately than those with limited data. 

 

5.1. Boosting algorithms 

 

Boosting is a powerful machine-learning technique that 

harnesses the collective power of many rough rules of thumb 

to generate a single, highly accurate prediction rule. This is 

achieved by repeatedly using a weak learning algorithm on 

varying subsets of training examples until a new weak 

prediction rule is generated. After many iterations, the 

boosting algorithm combines these weak rules into a robust 

rule. Boosting is a technique that can be applied to any base 

learning algorithm by assigning greater weight to challenging 

examples and combining weak rules through majority voting. 

In 1995, researchers [8] and [9] created the AdaBoost 

algorithm to improve the classification performance of other 

learning algorithms. AdaBoost is the first adaptive boosting 

algorithm that adjusts its parameters based on data 

performance. This includes re-weighting data and computing 

weights for final aggregation iteratively. The boosting 

algorithm comprises several steps, including: 

Step 1: Initialise weights - At the beginning of the process, 

each training example is given equal weight. 

Step 2: Train a weak learner - The weighted training data is 

used to train a weak learner. A weak learner is a simple model 



that performs slightly better than random guessing. A 

decision tree with a few levels can be used as a weak learner. 

Step 3: Error calculation - The error of the weak learner on 

the training data is computed. The weighted sum of 

incorrectly classified cases constitutes the error. 

Step 4: Update weights - Weights are updated based on the 

error rate of the training examples. Misclassified examples 

are given higher weights, while correctly classified examples 

are given lower weights. 

Step 5: Repeat - Steps 2 to 4 are repeated multiple times. A 

new weak learner is trained on each cycle's updated weights 

of the training examples. 

Step 6: Combine weak learners - The final model comprises 

all the weak learners trained in the previous steps. The 

accuracy of each weak learner is weighted, and the final 

prediction is based on the weighted sum of the weak learners. 

Step 7: Forecast - The completed model is used to predict the 

class labels of new instances. 

Our decision-making framework now includes 

AdaBoost, resulting in significantly improved prediction 

accuracy compared to using only a decision tree. Ongoing 

interdisciplinary efforts involve testing and parameterizing 

algorithms, with the expectation of further improvements in 

accuracy. 

 

6. CONCLUSION 

 

Our research focused on determining the feasibility of using 

artificial intelligence techniques to automatically detect 

archaeological ceramics from high-resolution images 

captured by unmanned aerial vehicles (UAVs). We also 

aimed to establish a methodology that can deliver results in 

terms of time and accuracy comparable to, if not better than, 

those obtained through traditional archaeological field 

surveys. To achieve this, we employed supervised machine 

learning algorithms that utilized RGB and multispectral 

images acquired from a UAV. 

Based on the methodology presented by [5], the findings 

of this study demonstrate that low-altitude remote sensing 

sensors can be highly effective in archaeological research. 

The classifiers employed in the study could predict majority 

classes (soil and crops) with high accuracy but could not 

accurately predict minority classes (surface ceramics). A new 

methodology has been proposed to improve the accuracy of 

detecting surface ceramics using drone images. This 

approach involves a boosting technique for weak learners and 

utilizes RGB and multispectral images. The resulting method 

provides more reliable and precise results, significantly 

improving the previous technique. 

The authors plan to expand their research on ceramics to 

include different types from various periods and spectral 

behaviors in the same area. To achieve this, they will conduct 

lab-based spectral measurements to ensure statistically 

significant spectral separability among the ceramics during 

the same flight. The team scheduled drone surveys to improve 

data for algorithm training and outcome assessment. Aiming 

to reduce noise, enhance separability, and evaluate 

imbalanced ceramics data using measures like F-measure, G-

mean, and ROC analysis. 
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