Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/33098
Τίτλος: Integrating transactions into the data-driven multi-threading model using the tflux platform
Συγγραφείς: Diavastos, Andreas 
Trancoso, Pedro 
Luján, Mikel 
Watson, Ian 
Major Field of Science: Engineering and Technology
Λέξεις-κλειδιά: Complexity theory;Radiation detectors;Runtime;Parallel processing;Instruction sets;Monitoring
Ημερομηνία Έκδοσης: 2011
Πηγή: First Workshop on Data-Flow Execution Models for Extreme Scale Computing, 2011
Conference: First Workshop on Data-Flow Execution Models for Extreme Scale Computing 
Περίληψη: Multi-core processors have renewed interest in programming models which can efficiently exploit general purpose parallelism. Data-Flow is one such model which has demonstrated significant potential in the past. However, it is generally associated with functional styles of programming which do not deal well with shared mutable state. There have been a number of attempts to introduce state into Data-Flow models and functional languages but none have proved able to maintain the simplicity and efficiency of pure Data-Flow parallelism. Transactional memory is a concurrency control mechanism that simplifies sharing data when developing parallel applications while at the same time promises to deliver affordable performance. In this paper we report our experience of integrating Transactional Memory and Data-Flow. The ability of the Data-Flow model to expose large amounts of parallelism is maintained while Transactional Memory provides simplified sharing of mutable data in those circumstances where it is important to the expression of the program. The isolation property of transactions ensures that the exploitation of Data-Flow parallelism is not compromised. In this study we extend the TFlux platform, a Data-Driven Multi-threading implementation, to support transactions. We achieve this by proposing new pragmas that allow the programmer to specify transactions. In addition we extend the runtime functionality by integrating a software transactional memory library with TFlux. To test the proposed system, we ported two applications that require transactional memory: Random Counter and Labyrinth an implementation of Lee's parallel routing algorithm. Our results show good opportunities for scaling when using the integration of the two models. © 2011 IEEE.
URI: https://hdl.handle.net/20.500.14279/33098
ISBN: 9781467307093
DOI: 10.1109/DFM.2011.14
Type: Conference Papers
Affiliation: University of Cyprus 
The University of Manchester 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

5
checked on 20 Οκτ 2024

Google ScholarTM

Check

Altmetric


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα