Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο:
https://hdl.handle.net/20.500.14279/33097
Τίτλος: | 3DRA: Dynamic Data-Driven Reconfigurable Architecture | Συγγραφείς: | Lee, Jinho Amornpaisannon, Burin Diavastos, Andreas Carlson, Trevor E. |
Major Field of Science: | Engineering and Technology | Field Category: | Computer and Information Sciences | Λέξεις-κλειδιά: | CGRA;dynamic dataflow;Reconfigurable architectures;coarse-grained reconfigurable array;accelerators | Ημερομηνία Έκδοσης: | 26-Σεπ-2023 | Πηγή: | IEEE Access , 2023, vol. 11, pp. 105288 - 105298 | Volume: | 11 | Start page: | 105288 | End page: | 105298 | Περιοδικό: | IEEE Access | Περίληψη: | Specialized accelerators are becoming a standard way to achieve both high-performance and efficient computation. We see this trend extending to all areas of computing, from low-power edge-computing systems to high-performance processors in datacenters. Reconfigurable architectures, such as Coarse-Grained Reconfigurable Arrays (CGRAs), attempt to find a balance between performance and energy efficiency by trading off dynamism, flexibility, and programmability. Our goal in this work is to find a new solution that provides the flexibility of traditional CPUs, with the parallelism of a CGRA, to improve overall performance and energy efficiency. Our design, the Dynamic Data-Driven Reconfigurable Architecture (3DRA), is unique, in that it targets both low-latency and high-throughput workloads. This architecture implements a dynamic dataflow execution model that resolves data dependencies at run-time and utilizes non-blocking broadcast communication that reduces transmission latency to a single cycle to achieve high performance and energy efficiency. By employing a dynamic model, 3DRA eliminates costly mapping algorithms during compilation and improves the flexibility and compilation time of traditional CGRAs. The 3DRA architecture achieves up to 731MIPS/mW, and it improves performance by up to 4.43x compared to the current state-of-the-art CGRA-based accelerators. | URI: | https://hdl.handle.net/20.500.14279/33097 | ISSN: | 21693536 | DOI: | 10.1109/ACCESS.2023.3319404 | Type: | Article | Affiliation: | National University of Singapore | Publication Type: | Peer Reviewed |
Εμφανίζεται στις συλλογές: | Άρθρα/Articles |
Αρχεία σε αυτό το τεκμήριο:
Αρχείο | Μέγεθος | Μορφότυπος | |
---|---|---|---|
3DRA_Dynamic_Data-Driven_Reconfigurable_Architecture.pdf | 1.56 MB | Adobe PDF | Δείτε/ Ανοίξτε |
CORE Recommender
Page view(s)
39
Last Week
0
0
Last month
21
21
checked on 30 Ιαν 2025
Download(s)
48
checked on 30 Ιαν 2025
Google ScholarTM
Check
Altmetric
Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα