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ABSTRACT Specialized accelerators are becoming a standard way to achieve both high-performance
and efficient computation. We see this trend extending to all areas of computing, from low-power edge-
computing systems to high-performance processors in datacenters. Reconfigurable architectures, such as
Coarse-Grained Reconfigurable Arrays (CGRAs), attempt to find a balance between performance and energy
efficiency by trading off dynamism, flexibility, and programmability. Our goal in this work is to find a new
solution that provides the flexibility of traditional CPUs, with the parallelism of a CGRA, to improve overall
performance and energy efficiency. Our design, the Dynamic Data-Driven Reconfigurable Architecture
(3DRA), is unique, in that it targets both low-latency and high-throughput workloads. This architecture
implements a dynamic dataflow execution model that resolves data dependencies at run-time and utilizes
non-blocking broadcast communication that reduces transmission latency to a single cycle to achieve high
performance and energy efficiency. By employing a dynamic model, 3DRA eliminates costly mapping
algorithms during compilation and improves the flexibility and compilation time of traditional CGRAs. The
3DRA architecture achieves up to 731MIPS/mW, and it improves performance by up to 4.43x compared to
the current state-of-the-art CGRA-based accelerators.

INDEX TERMS Reconfigurable architectures, coarse-grained reconfigurable array, CGRA, accelerators,
dynamic dataflow.

I. INTRODUCTION
While performance improvements of modern processors
have continued with each new CPU generation, the rate of
improvement over time has not kept pace with the perfor-
mance seen in previous decades [1], [2], [3]. To overcome
some of the limitations of traditional designs, specialized
accelerators have started to become the norm in high-
performance systems. State-of-the-art accelerators aim to
achieve high performance with low-cost, energy-efficient
designs. But, achieving these needs often sees sacrifices in
flexibility, programmability, or both.

Several specialized accelerators provide high performance
and energy efficiency for specific applications such as
Graphics Progressing Units (GPUs) [4], AI Accelerators [5],
[6], [7], Digital Signal Processors (DSPs) [8], graph
processors [9], [10], and cryptography accelerators [11].
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Unfortunately, these works tend to target single-workload
classes and are unable to accelerate a broad set of applica-
tions. To provide both high-performance and energy-efficient
designs for a wide range of applications, researchers have
been investigating reconfigurable architectures such as Field
Programmable Gate Arrays (FPGAs) and Coarse-Grained
Reconfigurable Arrays (CGRAs) [12], [13], [14]. However,
building a processor that is both flexible and easy to program
while maintaining performance and efficiency has proven to
be a difficult task.

Fast and efficient FPGA development requires a deep
understanding of the specific FPGA architecture to achieve
the frequency or performance targets needed. While
High-Level Synthesis (HLS) tools [15] can speed FPGA
development, reaching specific performance targets requires
a trial-and-error approach to select the #pragma options
that show the best performance. CGRAs offer an alter-
native approach, using components at a larger granularity
(functional-unit level) than FPGAs. However, finding a
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mapping for a given Control Data-Flow Graph (CDFG)
based on Modulo Scheduling [16] is known to be NP-
Complete [17], [18], which limits their scalability and
applicability. More importantly, typical compilation for these
statically-scheduled CGRA hardware designs can take many
hours [12].
These long compilation times, and general difficulty in

CGRA compilation, stem mainly from limited connectivity
between processing elements. More specifically, finding
optimal (single-hop) data transfer routes between instructions
is difficult, and even impossible for some applications, due to
the limited connectivity of mesh networks that are typically
used in CGRA implementations. To make matters worse,
when there exist high fan-out instructions, communication
resources such as wires and ports can be easily overwhelmed,
increasing data transfer latency. In this situation, it is
crucial to minimize the physical distance between dependent
instructions to optimize routes and achieve high performance
by minimizing the delivery latency.

Typically, a CGRAmaps multiple instructions at each pro-
cessing element. When dependent instructions are mapped
at the same location, the latency and resource usage can
be minimized. However, this technique can cause input
contention or output contention as the instructions compete
to use the same input and output ports. In addition, support
for dynamic events in modern CGRA architectures is not
typically provided. Dynamic events are those that are not
resolved in a pre-determined amount of time. For example,
a cache miss, versus a hit, could take a significantly longer
time before the data is returned. The compiler for a CGRA,
in the case of a statically scheduled architecture, needs to use
the worst-case timing of these dynamic events to guarantee
correctness. Thus, an instruction that can take a variable
amount of time to execute, such as memory access, has to
be scheduled assuming the longest possible memory access
time. This can add significant latency to the computation,
reducing performance.

In this work, we propose a new architecture, called
the 3DRA, or the Dynamic Data-Driven Reconfigurable
Architecture, that aims to overcome the limitations of
traditional CGRAs that include the complexity of compi-
lation, lack of the ability to efficiently handle dynamic
events that take variable time, and the performance loss
due to sub-optimal data delivery latency. The goal of
this new architecture is to increase flexibility and reduce
the application development effort for traditional CGRAs,
while at the same time improving their performance and
energy efficiency. The 3DRA accelerator employs dynamic
data-driven execution and enables fast all-to-all connectivity
between Processing Elements (PEs) to allow for more
flexible and aggressive scheduling that significantly reduces
latency and compilation time. Dynamic data-driven execution
also improves programmability, as the programmer and the
compiler are no longer responsible for statically defining
the scheduling and the data dependency resolution of the
instructions.

The proposed design implements a single-cycle, all-to-all
bypass network to connect all the processing elements in the
accelerator. This significantly reduces latency and improves
data transfer efficiency as it eliminates contention events
when multiple processing elements are trying to send data
through the network. More importantly, the new hardware
design proposed in this work overcomes the limitations of
CGRA instruction mapping, as each processing element can
now directly send data to any other processing element in the
accelerator.

Below, we list the main contributions of this work:

• A reconfigurable architecture, called the 3DRA, that
supports dynamic data-driven events and a single-
cycle all-to-all communication network to (a) solve the
extremely difficult programming challenge of CGRAs,
(b) minimize data transfer latency, (c) achieve efficient
dynamic adaptability to various workloads, and finally
(d) minimize contention due to instruction PE placement
and high-fan-out instructions;

• A detailed analysis of this new architecture, showing
that the 3DRA achieves up to a 4.43x performance
improvement over state-of-the-art CGRA accelera-
tors and throughput of up to 13,748MIPS while
achieving power-efficiency of 731MIPS/mW and an
area-efficiency of 35,709MIPS/mm2.

II. BACKGROUND
CGRAs, or Coarse-Grained Reconfigurable Arrays [12],
[19], [20] are a type of accelerator from a category
between Application-Specific Integrated Circuits (ASICs)
and Field-Programmable Gate Arrays (FPGAs) in terms
of configurability and performance. They consist of a
collection of functional units, memory units, and control
logic, interconnected by a statically programmable fabric.
This fabric allows the functional units to be dynamically
connected and reconfigured based on the specific compu-
tational requirements of the application. CGRAs usually
target high-performance computing kernels that consume a
significant amount of time from an application and accelerate
execution by providing a high level of parallelism. They
are most commonly used in digital signal processing and
multimedia processing applications.

Overall, CGRAs offer a good balance between perfor-
mance and configurability, making them well-suited for
specific types of computationally intensive applications.
However, they tradeoff programmability for increased scal-
ability. In CGRAs, the interconnection of functional units
commonly employs a mesh network topology, wherein
the units iteratively execute instructions that are stored
within their configuration memories, as orchestrated by the
compiler. The role of the compiler extends beyond instruction
placement, to include the determination of both the data
transfer pathway through the network and the associated
transfer timing.
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FIGURE 1. Example sub-tree. The path between OP0 and OPn−1 is the
longest path containing OPn.a.

The compilation complexity in CGRAs grows exponen-
tially as it is affected by factors such as the size of the target
program and the number of functional units involved [21],
[22]. This does not allow the offloading of large workloads,
forcing users to accelerate only small inner loops in order
to maximize performance and efficiency. Considering just
the temporal aspect of the execution schedule, that is the
data transfer timings through the interconnection network,
the process of compilation for a CGRA is still complex
even for simple workloads, and is in fact an NP-complete
problem [17], [18].

Instead, in this work, we target fast communica-
tion between PEs. We accomplish this by deploying a
fully-connected network that dynamically constructs the
execution schedule based on the input Control Data-Flow
Graph (CDFG). This eliminates the need for temporal
knowledge of instruction execution and data transfer timings,
leading to streamlined data communication, improved
programmability with simplified compilation procedures,
and ultimately higher performance and efficiency.

III. PROBLEM FORMULATION
Apart from simplifying the mapping and the execution of
a CDFG, with 3DRA, our aim is to propose an accelerator
that approaches optimal performance. In this section, we first
define optimality in processing a CDFG and define the
requirements that need to be met.

A. OPTIMAL DATAFLOW EXECUTION
Assuming a single-cycle latency for each compute operation
(OP) in a dataflow graph, for each operation, the longest path
to reach any operation requires n operations including itself.
We therefore consider it to be the optimal processing when
it is completed in

∑n
i=0 Ci cycles, where it takes Ci cycles to

process OPi (as shown in Figure 1a).
Assuming this definition, to prove that an accelerator can

guarantee optimality, we must show that for the base case, the
inductive step holds. For the base case, the operations without
a predecessor can be executed immediately using constant
values without any delay. To show that the inductive step
holds, we must show that a spatial accelerator can complete
the execution of OPn in Figure 1b in

∑n
i=0 Ci + Cn. In other

FIGURE 2. The high-level design of a 3DRA accelerator.

words, the accelerator must transfer data between OPn−1 and
OPn without delay and execute OPn as soon as the operands
arrive.

B. MINIMIZING DATAFLOW OVERHEADS
While optimality is the goal of this work, several constraints
make this task difficult. We first analyze the causes of
each source of delay, and then demonstrate how our
microarchitecture can minimize each of these overheads.

Such data transfer delays can occur in three places: (1)
inside the network, (2) at the receiving PE, or (3) at the
sending PE. When data is transferred from a sender to a
receiver through (1) the network, the delay can be affected
by the distance between operations, the hop count, and
also whether there is network contention. To minimize the
network delay, a new type of network can be designed where
the data can be sent to the destination immediately, regardless
of the location or the activities of other PEs. When (2) a
receiving PE takes data from multiple senders, depending on
the number of input ports, they might not be processed at
the same time. For example, if a PE has a single input port
and processes an addition operation with two inputs, it will
require at least two cycles to receive the operands. It can take
even longer if multiple instructions are mapped to a single
PE and they both compete for the use of the input ports. This
type of delay caused by limited ports can happen at (3) a
sending PE’s side too. When a sender has multiple receivers,
it can take multiple cycles to generate and send out packets
for them.

To minimize these delays caused by the network, in our
proposed 3DRA design, we introduce a fully connected
network using uni-directional broadcast channels, where we
guarantee that the receiving PE will always receive an input
packet in a single cycle. To eliminate delays at the receiving
PE we allow input operands to be received simultaneously
without contention at the input ports. Finally, to eliminate
delays at the sending PE, we broadcast its output only when
all of its receivers are ready to receive.

IV. THE 3DRA DESIGN
In this section, we describe the design and execution
model of the proposed Dynamic Data-Driven Reconfigurable
Architecture (3DRA). This accelerator design aims to
optimize the computationally intensive inner loops that tend
to dominate the execution time of many kernels. More
specifically, we focus on minimizing communication delays

105290 VOLUME 11, 2023



J. Lee et al.: 3DRA: Dynamic Data-Driven Reconfigurable Architecture

FIGURE 3. The execution model of a 3DRA processing element (PE).

and improving programmability by removing potential input
or output contention while also reducing network latency.

A. PROPOSED ARCHITECTURE
Figure 2 shows the high-level design of a 3DRA accelerator.
It consists of multiple Processing Elements (PEs), memory
controllers, and a single local memory space (scratchpad)
that operates on 32-bit data. During execution, a PE operates
on a single instruction assigned by the compiler. When the
operands of the instruction are produced and delivered by its
producers, it executes the instruction and sends the output to
the appropriate consumer if the receiver is ready to consume
it. All these steps are done dynamically, alleviating the
burden of compiler-driven orchestration typically associated
with conventional CGRA architectures. As a result, the
compilation process is simplified to a straightforward 1-to-1
instruction-to-PE mapping step.

The PEs are connected using an all-to-all bypass net-
work that allows for single-cycle broadcast communication
between any two communication points. The all-to-all com-
munication is implemented using uni-directional broadcast
channels in which the data transfer delay is minimized.
The PEs are separated and allocated into clusters, with
each cluster assigned a dedicated memory controller. Each
memory controller incorporates an arbiter to handle multiple
requests. To facilitate communication between PEs belonging
to different clusters, the PE producing the data to be
transmitted will broadcast its data to all other clusters.

1) DYNAMIC DATA-DRIVEN EXECUTION
3DRA and more specifically, its processing elements
(PEs), follow a dynamic data-driven execution model.
Figure 3 shows the execution flow of a processing element.
Instructions are assigned to PEs in such a way to avoid the
potential input and output contention that can happen when
multiple instructions are mapped to the same PE. Each PE
waits to receive input data that can be from other producing
PEs. When the input arrives at the PE, it is first stored to
the input FIFO. At the same time, the PE checks whether all
of the operands needed have arrived. Similary to a dataflow
machine, the execution of instructions relies exclusively on
the availability of input operands and is determined between
steps 2 and 3 in Figure 3. Furthermore, it does not impose
constraints on the execution duration of any instruction, thus
enabling 3DRA to handle instructions that exhibit varying
time requirements, a capability that is absent in conventional
CGRAs.

Once all of the operands are ready, the PE can start
computing. After the execution of the instruction, the data is

FIGURE 4. A PE receives and stores its input operands, in the input FIFO
queues, through the data broadcasting lines. The executing instruction is
stored in the opcode register. The result is stored in the output register
and broadcast to all receiving PEs when ready.

stored in the output register of the PE until all of its destination
(consuming) PEs are ready to receive it. This is determined
by the ready-to-send signal. Note that, all steps in 3DRA are
pipelined to increase instruction throughput.

2) PROCESSING ELEMENT DESIGN
Figure 4a presents the architecture of the processing element
(PE). Each PE is configured based on the application that
will be accelerated, and each instruction from the loop
that is to be accelerated is assigned to a dedicated PE.
During the configuration phase, the PEs, the input sources,
and the operation types are specified. As highlighted in
Section IV-A1, this approach helps mitigate the issues related
to input contention, output contention, and programming
complexity. The PEs are connected to each other using
uni-directional data broadcasting lines that implement an
all-to-all bypass network. This enables fast, contention-free
communication between dependent PEs.

A PE is designed to handle an instruction where the source
operands are specified in the registers connected to the data
broadcasting lines, and the operation in the opcode register
is executed when the source operands are ready in the input
FIFOs. The output of the arithmetic logic unit (ALU) is
stored in the output register and sent out when the ready-to-
send signal is set to high; this indicates that all target PEs
to receive the output are ready. If the computation happens
when the ready-to-send signal is set to high, the result is
immediately sent out, bypassing the output register. This
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enables low-latency communication with other functional
units and PEs.

Figure 4b shows how the data broadcasting lines within
a PE handle communication using valid and ready signals.
A PE sends a ready signal to its source PE specified
by the source index register that is initialized during the
reconfiguration phase. By default, all ready signals of a PE
are set to high. The ready signal of a source PE changes to
low only if the input FIFO is full. A multiplexer connected to
an input FIFO queue uses the source index register to select
the source operands of the instruction to be executed. When
the valid signal is set to high, the incoming data is queued
into the input FIFOs (i1 for operand 1, i2 for operand 2, or p
for predicate inputs). When the ALU is idle, each FIFO is
checked for available data in every cycle.

As soon as all the operands arrive in the FIFOs, they
are sent to the ALU to execute the instruction denoted by
the opcode register. An ALU supports various operations
including multiplication and division. The multiplier and the
divider are pipelined to reduce the timing delay.

3) SINGLE CYCLE, NON-BLOCKING BROADCAST
COMMUNICATION
We minimize the communication latency by implementing
an all-to-all bypass network through uni-directional data
broadcasting lines that allow for parallel, low-latency data
exchange. All PEs send their output to all receiving PEs at
the same time when all destinations are ready to receive data.
Having a direct connection to every PE not only reduces
transfer latency but also enables 3DRA to efficiently handle
high fan-out instructions, with numerous destination instruc-
tions. Regardless of the number of transfers, an instruction
can send its output to all of its destinations in a single
cycle. Whereas, in traditional CGRAs using a mesh network,
only a single packet can be sent at a time, increasing the
data transmission latency. To check if all destinations are
ready to receive, all of the ready signals through the data
broadcasting lines are reduced as shown in Figure 6 in
every cycle. Then, when all the ready signals are set to
high, the source PEs are immediately informed by the AND
reduction module to send its data. This method simplifies
the scheduling process as all data transfers are handled
dynamically and guarantee the incoming input data order
and correct execution synchronization. The data arrive at the
destination immediately, making sure they are not received
out-of-order, which could be the case for packet-switched
networks.

4) PREDICATION AND OPTIMIZING MEMORY OPERATIONS
The 3DRA implements predication using comparison (CMP)
and selection (SELECT) instructions. CMP checks the
equality of two operands and sends True or False to all
receivers (instructions in both directions of a branch). CGT
(greater than) and CLT (less than) instructions also work
similarly. The receivers of the CMP operation check the
validity of its CMP output and mark it in the output value

using an extra bit (the validity bit). Instructions in both valid
and invalid paths of the branch will execute regardless of
the value of the outcome of the CMP instruction. However,
the SELECT instruction will choose the correct output of the
branch sequence that is marked as VALID.

When executing a load instruction, a request is sent to
the memory controller through the memory channel and
waits for the response to return. When the response arrives,
the data is fetched and stored in the output register of the
corresponding PE until the ready-to-send signal is set to high.
To optimize the execution in the 3DRA and save resources
such as time, memory ports, and power, invalid memory
operations (LOAD instructions in the wrong path of a branch)
are dropped dynamically and a dummy value is sent to the
consuming instructions in the next cycle. This reduces the
cost of unnecessary memory access to just a single cycle,
while the dynamic nature of 3DRA will handle the changes
in the scheduling as dependencies are resolved at runtime.
To improve utilization, store instructions are executed by
sending a write request to the memory controller without
waiting for a response.

Figure 5 shows an example that illustrates how predication
and dynamic memory accesses are optimized to improve
performance in 3DRA when the LOAD instructions use a
single port. The example in Figure 5a assumes a ternary
operation (condition ? a[i]: b[i] + c[i]) is
mapped on a spatial architecture and statically programmed.
When the output of the CMP instruction is True, the address
of a[i] is calculated by the ADD (instruction #1), and
the validity bit is set to VALID. The value is then read by
the LOAD (instruction #4). Otherwise, when the output of
CMP is False the LOAD instruction #4 (depending on the
implementation of the CGRA) can send a dummy output
attachedwith INVALID bit without actually fetching the data.
In this case, LOAD instructions #5 and #6 are executed and
send out the correct outputs along with a VALID signal. Next,
the SELECT instruction (#8) picks a valid input operand
between the outputs of instructions #4 and #7. Even though
the LOAD instructions are not executed, given a statically
mapped execution environment, the timing of instructions is
predefined at compile time and cannot be changed at run-
time. Therefore, in a traditional CGRA, the instructions (#7
and #8) should wait for all of the source operations (the worst-
case execution latencies from all paths) to be completed
before starting execution. This wastes valuable cycles when
the valid path is the one on the left in Figure 5a.

In 3DRA, by dynamically handling the predication and
memory accesses, the hardware naturally minimizes the
execution time, saving the wasted cycles seen by static spatial
architectures. Figure 5b, shows 3DRA’s execution flow when
the CMP instruction (#0) is True. In this case, the LOADs
in the invalid direction (instructions #5 and #6) can be
dropped completely, but they still have to send an output
for their consumers to continue execution. Thus, they send
dummy output values to ADD (#7) without accessing the
memory. This way, it takes only 6 cycles to complete, while
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FIGURE 5. Dynamic predication handling example when executing a ternary operation: condition? a[i]: b[i] + c[i]. The predication
bit is sent as data in the dataflow graph. The example above assumes a single port, pipelined memory configuration where LOADs
take 2 cycles to fetch the data. Note that, in a statically mapped CGRA, each instruction is programmed to execute in a predefined
cycle (calculated by the compiler) regardless of the outcome of the condition (CMP instruction). They are only validated at the end
of the block with the SELECT instruction, where the results of those marked as invalid (incorrect path of the branch) will be ignored.

FIGURE 6. Ready signal reduction: Each PE is coupled with one AND
reduction module. In every cycle, an AND module checks if all of its
destination PEs are ready by reducing their ready signals in the Data
Broadcasting Lines and informs its coupled PE to send its data.

it takes 8 cycles for a statically programmed execution. If the
CMP (instruction #0) is False (Figure 5c), the following
LOADs (instructions #5 and #6) will be executed in the same
manner as the statically programmed execution, taking the
full 8 cycles.

B. PROGRAMMABILITY
Programming the 3DRA is simpler than mapping to tradi-
tional CGRAs, as our design relies on dynamic execution
that does not require the user to explicitly define the
execution schedule. Configuring a PE only requires the
source operands’ indices to be used for receiving data from
the appropriate source PEs and the instruction opcode that
will define the operation it will execute. Taking into account
the memory access latency of each memory operation is also
not required in the proposed implementation. Instead, the
3DRA hardware determines when to compute and transfer

data dynamically using the ready-to-send signals. In addition,
because all PEs are homogeneous and the data transfers are
handled through a non-blocking broadcast, the instructions
can be placed in any PE. This eliminates costly optimization
phases over resources and routing paths between instructions
found in traditional CGRAs. Finally, this design builds on the
operation-level reconfigurability of a CGRA to allow for fast
reconfiguration.

C. WALK-THROUGH EXAMPLE
To demonstrate how the 3DRA accelerates the execution of a
loop, we present an example in Figure 7. For this example,
we use a simple loop of 5 instructions with dependencies
depicted in the Dataflow Graph (DFG) in Figure 7a. Each
instruction in this example takes 1 cycle to complete. Because
the 3DRA is using an all-to-all broadcast bypass network,
we simply map instructions to the PEs sequentially as shown
in Figure 7b. Note that, since each PE receives a dedicated
instruction to execute, the number of PEs must be equal to or
more than the number of instructions to be executed. While
we currently require a 1-to-1 mapping for instructions to
PEs, extending the 3DRA architecture to support multiple
instructions per PE is possible, but beyond the scope of this
current work.

Figure 7c shows the execution flow of a 3DRA accelerator
with 3-entry input FIFO queues, with each block representing
the input data received in each cycle. For example, in cycle
2, PE2, PE3 and PE5 have already received the output from
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FIGURE 7. Mapping a sample DFG on 3DRA with 5 PEs and exposing loop
level parallelism. The PEs firing computations are colored and the arriving
operands are specified with the source node id.

PE1 that executed instruction n1. In the next clock cycle,
n2 (PE2) and n3 (PE3) send their outputs to n4 (PE4)
in parallel, as supported by our broadcast network. The
execution then continues until one complete iteration of the
DFG is complete.

Since the example is a loop, the execution pattern is
repeated, and assuming that each iteration is independent of
the rest, the execution of subsequent iterations is pipelined
and can start as soon as the executing resources are available.
This allows the 3DRA to exploit the loop-level parallelism
present in the application. To support this, however, it is
necessary to have enough entries in the input FIFO queues
to allow PEs that have finished the current loop iteration
instruction to move to the next iteration and store their output
in empty slots in the input FIFO queues of their consuming
PEs. The benefit of this is depicted in Figure 7d, where we use
single-entry input FIFO queues. Because a PE only sends its
output if all of the destinations are ready to receive (i.e. have
an empty slot in their input FIFO queue), a single-entry FIFO
queue would block future iterations from being executed until
that PE executes its instruction. In our example, PE1 can start
executing the next iteration only after PE2, PE3, and PE5
consume the n1 output, which happens in cycle 4. Therefore,

TABLE 1. Benchmark characteristics.

when using a single-entry input FIFO queue, the next iteration
can only start in cycle 5.

V. EXPERIMENTAL SETUP
We implemented the 3DRA in Chisel 3 [23] and synthesized
it using Cadence Genus targeting a commercial 22 nm
technology node. We use Synopsys VCS-MX v2015.09 for
simulation, Synopsys PrimePower v2019.03 for power con-
sumption measurements, and Cadence Innovus for place
and route. We apply clock gating and power gating to
3DRA. We use the average switching activities across all
the benchmarks in Table 1 to calculate 3DRA’s power
consumption. Unless otherwise specified, all comparisons
are performed using synthesized power and area results as
a fair comparison with REVAMP [20]. Table 2 outlines
the configurations we evaluated in this study. We evaluated
3DRA with kernels of benchmarks which are selected in
the state-of-the-art CGRA implementation [20] from various
application domains (see Table 1). Tomatch the precision and
have a fair comparison, the instruction set and the data widths
are the samewith REVAMP [20]. In addition, we use identical
input control- and data-flow graphs (CDFGs).

VI. EVALUATION
A. OVERALL IMPROVEMENTS
In our experiments, the 3DRA delivers up to 4.43x higher
instructions per cycle (IPC) over the current state-of-the-art
CGRA implementation (REVAMP [20]), due to our mini-
mized communication overheads and the deeply pipelined
execution using the input FIFO queues. In REVAMP,multiple
instructions are placed in each PE while 3DRA uses more
PEs and maps only a single instruction per PE. By increasing
the number of PEs, we maximize the number of instructions
executed in parallel. Finally, we show up to 731MIPS/mW
of power efficiency, which is again higher than the baseline.

B. QUALITY OF EXECUTION SCHEDULES
Figure 8 shows the impact of the FIFO size on a 64 PE
3DRA implementation with respect to Instructions Per Cycle
(IPC). To highlight the benefit of dynamic data-driven
execution, the 3DRA is compared with the state-of-the-art
CGRA, REVAMP [20]. In such static designs, performance
is calculated using Initiation Intervals (II) which is defined
as the time gap between two consecutive iterations. Then, the
iterations are repeated in every II cycles. For this comparison,
its IPC is calculated as #Nodes/II .

We observe that the impact of FIFO size is significant. The
3DRA tends to show higher IPC values than the baseline
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FIGURE 8. Instructions per cycle (IPC) comparison against a
state-of-the-art CGRA implementation, REVAMP [20]. HT means that it
uses heterogeneous PEs while HM uses homogeneous PEs. 3DRA is using
64 PEs for these results and the FIFO size is labeled at the end (3DRA_8
indicates an input FIFO size of 8 entries for this configuration). The mean
represents the harmonic mean across benchmarks. When the FIFOs have
more than 2 entries, 3DRA shows a higher mean IPC than REVAMP.
In addition, when the FIFO size is greater than or equal to 4, 3DRA shows
higher IPC in all benchmarks. The 3DRA accelerator shows up to a 4.43x
IPC improvement over the homogeneous version when the FIFO size is
fixed to 16.

and improves as the FIFO size grows. However, it can be
slower than the baseline (e.g., CRS and stencil2d) when the
FIFO size is small because the size of the queue defines the
loop-level parallelism that can be exploited. Due to the nature
of the broadcast communication network used in 3DRA,
a single-entry FIFO queue would force the entire loop to
execute before allowing the next iteration to start execution.
Increasing the number of entries in the FIFO queue allows
for more data to be stored at the same time and consequently
additional iterations to be pipelined in 3DRA (as described in
the example of Figure 7).

C. NUMBER OF PROCESSING ELEMENTS
As a PE handles a single instruction, themaximum IPC is lim-
ited by the number of PEs. In the workloads characterization
study [19], it is pointed out that the regions that take about
90% of the execution are composed of 51 to 264 instructions.
By having up to 256 PEs, 3DRA can cover most of the highly
repeated regions. In addition, all of the benchmarks used in
the state-of-the-art CGRA [20] can be covered with 64 PEs.
Thus, three versions of 3DRA having 64, 128, and 256 PEs
are evaluated in this work.

In Table 2, the impact of the number of PEs and frequency
on power and area is shown where the FIFO size is fixed to
16 entries. When the number of PEs grows, the frequency
drop becomes larger as it becomes more difficult to optimize
the design’s placement and routing due to the complexity
of the broadcasting network implementation. However, the
possible (upper-bound) throughput of the system continues to
improve despite the frequency decreases. For example, when
we double the PE count from 64 to 128, the throughput can
double while the frequency reduces by just 21%; this results
in a maximum throughput improvement of 58%. A further
doubling also sees a 100% increase in PEs, but now with
a 36% decrease in frequency. The result continues to be
a net win for scalable applications, with a 28% increased
throughput over the 128 PE case. While out of scope for

TABLE 2. Impact of PE count and frequency on power and area. The input
FIFO size is 16. To compare fairly with REVAMP, we use the power and
area from a synthesized design that excludes the estimated interconnect
area.

this current work, we expect an increase in performance for
most workloads with additional unrolling. Synthesis results
are also included for a fair comparison with REVAMP [20].

D. POWER EFFICIENCY
Figure 9a shows the power efficiency of the 3DRA
in two configurations compared to previously proposed
power-efficient CGRA implementations [20], [24]. The
3DRA accelerator shows the highest level of power efficiency
on average, at 413MIPS/mW with 64 PEs running at
690MHz. REVAMP [20] can reach up to 177MIPS/mW
using heterogeneous PEs. Snafu [24], an ultra-low-power
CGRA, reports that it achieves 305MIPS/mW. It is said to
be synthesized using sub-28 nm technology. These results
demonstrate that the 3DRA can exploit a large amount
of parallelism (and performance) with higher power effi-
ciency compared to current, state-of-the-art, reconfigurable
architectures.

E. POWER BREAKDOWN
In Table 3, the power breakdown is shown consisting of
compute units, FIFOs, control units, and memory controllers.
Most of the power in 3DRA is spent on computation and
buffering incoming data at input FIFOs. FIFOs take a large
portion of the total power consumption in the design and
consume around 45% of the total power. The size of the
FIFOs can be reduced when the power budget is tight or
the target application kernels that will be run on 3DRA do
not benefit from bigger FIFOs such as Conv2d as shown in
Figure 8.

F. AREA EFFICIENCY
The areas of synthesized 64 PE, 128 PE and 256 PE
versions of 3DRA are 0.385mm2, 0.774mm2, 1.566mm2,
respectively. In the best case, 3DRA can reach up to
35,709MIPS/mm2 with an average area efficiency of
20,198MIPS/mm2, with 64 PEs running at 690MHz.
This is approximately 3.7× the area efficiency of the
REVAMP-HT, the heterogeneous version that demonstrates a
5,450MIPS/mm2 area efficiency. Snafu [24] does not reveal
the exact area and only mentions it is much smaller than
1mm2. Due to the lack of information, we are not able to
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FIGURE 9. Efficiency compared to state-of-the-art CGRAs when 3DRA is
synthesized using 16 FIFO entries. Throughput numbers are averages
across all benchmarks. We cannot accurately list Snafu’s [24] area
efficiency as they don’t provide an exact size (reported as lower than
1 mm2).

TABLE 3. Power consumption breakdown of the 3DRA with 64 PEs and
16 input FIFO entries.

compare 3DRA with this prior work in terms of performance
per area. Figure 10a shows the layout of 3DRA with 128 PEs
and 16 FIFO entries.

VII. RELATED WORK
We classify related work based on their instruction placement
and issue schemes using the taxonomy from [25].

A. DYNAMIC PLACEMENT, DYNAMIC ISSUE
DynaSpAM [26] uses a spatial architecture coupled with an
Out-of-Order (OoO) processor that generates OoO execution
schedules for it to enable dynamic scheduling. However,
the issuing of instructions follows a fixed schedule that can
unnecessarily delay operations, even though their operands
arrive early. Therefore, its performance is limited by the host
processor.

FIGURE 10. Architecture and layout information.

B. STATIC PLACEMENT, DYNAMIC ISSUE
Most spatial architectures employ static placement solutions
to minimize the routing costs on the fabric. However,
their processing units are using a point-to-point network
that increases network latency, due to multi-hop data
communication. If the placement cannot be optimized,
it will result in significantly reduced performance [25], [27].
Wavescalar [28] builds clusters of processing elements to
allow for higher scalability and reduces network latency
within clusters by connecting processing elements with a bus.
This solution is limited by the capabilities of the compiler
as it requires smarter placement policies to allow for shorter
communication between neighboring instructions/processing
elements.

Versat [29] consists of several PEs that are fully connected
using a wide data bus, which enables single-cycle data access
between any PEs similar to 3DRA. However, the PEs are
programmed based on a 672-bit word-level configuration.
The number of execution cycles is fixed to ensure that all
the operations are completed before sending data, which
can stall operations that are already ready to send outputs.
In addition, it has just 2 pipeline stages, which can limit the
throughput. In contrast, the PEs of the 3DRA architecture are
independently programmed, and they send data whenever the
output value is ready and the destination PEs are ready to
receive them. In addition, the input buffers in every PE enable
3DRA to pipeline the target kernel at a much deeper level,
which results in higher throughput.

Snafu [24] achieves very low power consumption by
statically programming a crossbar network-on-chip with
multi-hop data transfers. However, its buffer-less network
design requires complex communication scheduling to avoid
conflicts when data are sent on a channel.

RipTide [30] extends Snafu using a hardware-software
co-design methodology to achieve higher performance and
efficiency. The control-flow instructions are handled in the
Network on Chip (NoC) to increase the utilization of PEs and
the compiler handles the placement and routing considering
the control-flow handling on NoC. In 3DRA, by using
an all-to-all bypass network, the placement, and routing
are heavily simplified without requiring complex compiler
support. It also enables 3DRA to achieve low latencies
while the mesh network can cause longer latencies due
to multi-hop data transfers. RipTide reports 17% higher
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performance over Snafu [24] which is still lower than
the throughput we achieve in this work. However, they
achieve up to 1,970MIPS/mW which is higher than 3DRA’s
power efficiency. While RipTide outperforms 3DRA from
an energy-efficiency perspective, our solution is the first to
present a comprehensive, energy-efficient solution, that is
easy to program, and handles dynamic events. Unfortunately,
the workloads used to evaluate the two solutions are different,
so a direct comparison isn’t yet possible.

C. STATIC PLACEMENT, STATIC ISSUE
Statically building the placement and the issuing of instruc-
tions sacrifices flexibility with power efficiency [19], [31],
[32]. To enable static issue, the routing must be done to
guarantee that the operands are ready by issue time. This
is a complicated task and often takes hours to complete
when performed using Iterative Modulo Scheduling [16].
HyCUBE [12] improves communication performance by
enabling single-cycle multi-hop data transfer on a mesh
network. However, the wires on the mesh network can be
used only once per cycle, creating contention between com-
municating PEs. While HiMap [33] allows for more efficient
mappings for large CGRAs, it is limited to multi-dimensional
kernels and is not generic.

D. ARTIFICIAL INTELLIGENCE
To enhance both compilation time and mapping quality,
artificial intelligence methodologies such as reinforcement
learning or graphical neural networks [34], [35], [36] are
frequently employed. However, their success is not guar-
anteed due to the hardware limitations of the conventional
CGRAs, like a mesh interconnection network and instruction
execution timing constraints.

E. COMMUNICATION NETWORKS
All-to-all bypass networks are widely used in out-of-
order CPUs to reduce the communication delays between
operations [37]. By using a bypass network, the result of
an instruction can be immediately forwarded to the next
instruction that uses it as an input operand bypassing the
register file and/or the memory, thus reducing access latency.
To achieve this in a CPU that detects dependencies at runtime,
a dedicated control module is required along with the bypass
network to manage tagging and network arbitration. This
dynamic tagging and arbitration require complex hardware,
especially as the number of functional units increases, since
the controlmodulemust plan andmonitor the entire execution
flow in every cycle. In addition, the complexity increases
when the CPU has deep pipeline stages [38]. In 3DRA,
we implement dynamic dataflow execution where each
processing element can independently determine whether
it’s ready to execute or send the output to the destinations.
Therefore, allows us to create a much simpler all-to-
all bypass network without tagging and a central control
unit.

VIII. CONCLUSION
In this work, we propose the 3DRA reconfigurable accelera-
tor that implements a dynamic dataflow execution model to
resolve data dependencies at runtime. This accelerator also
builds on a single-cycle, non-blocking broadcast communica-
tion system to utilize a low latency network which reduces the
latency to nearly zero. This results in up to 4.43x increase in
throughput compared to previous works and power efficiency
of up to 731MIPS/mW.
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