Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/33028
Τίτλος: Performance and scalability of deep learning models trained on a hybrid supercomputer: Application in the prediction of the shear strength of slender RC beams
Συγγραφείς: Bakas, Nikolaos P. 
Markou, George 
Charmpis, Dimos C. 
Hadjiyiannakou, Kyriakos 
Major Field of Science: Engineering and Technology
Field Category: Computer and Information Sciences;ENGINEERING AND TECHNOLOGY;Civil Engineering
Λέξεις-κλειδιά: High-Performance Computing;Deep Learning;Artificial Neural Network;Finite Elements;Nonlinear Analysis;Reinforced Concrete;Slender Beams
Ημερομηνία Έκδοσης: 1-Ιαν-2021
Πηγή: 8 th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
Volume: 2021-June
Conference: ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering 
Περίληψη: Data-driven models employing artificial intelligence approaches have been increasingly utilized in structural analysis and design problems over the past two decades. The main applications involve the processing of datasets, which are gathered from experimentally derived records or obtained numerically, in order to develop closed-form formulae or numerical tools predicting quantities related to structural response and mechanical behaviour. Given that datasets are difficult to assemble due to the limited available information and the high cost entailed to enrich them, exhaustively processing the available data to produce the best possible prediction models is an essential task of particular interest. For specific applications, this exhaustive computing task involves large numbers of iterations performed to train detailed prediction models with large numbers of parameters. Despite the intense computational demands of such problems, limited research work exists on the scaling-up of the utilized algorithms on supercomputers. In this work, a distributed training and hyperparameter tuning algorithm is proposed for the modelling of the shear strength of slender beams without stirrups. The training dataset comprises results obtained from the detailed modelling and analysis of several beams with non-linear finite elements using the Reconan software. The results presented in this research work highlight the importance of optimally utilizing computational power for the solution of such problems. The developed computer code is available on GitHub.
URI: https://hdl.handle.net/20.500.14279/33028
ISSN: 26233347
Type: Conference Papers
Affiliation: University of Pretoria 
The Cyprus Institute 
University of Cyprus 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

Αρχεία σε αυτό το τεκμήριο:
Αρχείο ΜέγεθοςΜορφότυπος
performance-and-scalability.pdf509.49 kBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

26
Last Week
1
Last month
checked on 22 Νοε 2024

Download(s) 50

20
checked on 22 Νοε 2024

Google ScholarTM

Check


Όλα τα τεκμήρια του δικτυακού τόπου προστατεύονται από πνευματικά δικαιώματα