COMPDYN 2021

8" ECCOMAS Thematic Conference on

Computational Methods in Structural Dynamics and Earthquake Engineering
M. Papadrakakis, M. Fragiadakis (eds.)

Streamed from Athens, Greece, 28-30 June 2021

PERFORMANCE AND SCALABILITY OF DEEP LEARNING MODELS
TRAINED ON A HYBRID SUPERCOMPUTER: APPLICATION IN THE
PREDICTION OF THE SHEAR STRENGTH OF SLENDER RC BEAMS

Nikolaos Bakas', George Markou?, Dimos C. Charmpis® and Kyriakos
Hadjiyiannakou*!

LComputation-based Science and Technology Research Center, The Cyprus Institute
20 Konstantinou Kavafi Street, 2121, Aglantzia Nicosia, Cyprus.
e-mail: n.bakas@cyi.ac.cy

2 Structures Division, Civil Engineering Department, University of Pretoria
Hatfield Campus, 0028 Pretoria, South Africa.
e-mail: george.markou@up.ac.za

3 Department of Civil and Environmental Engineering, University of Cyprus
75 Kallipoleos Str., P.O. Box 20537, 1678 Nicosia, Cyprus
e-mail: charmpis@ucy.ac.cy

4 University of Cyprus, Department of Physics
e-mail: k.hadjiyiannakou@cyi.ac.cy

Keywords: High-Performance Computing, Deep Learning, Artificial Neural Network, Finite
Elements, Nonlinear Analysis, Reinforced Concrete, Slender Beams.

Abstract. Data-driven models employing artificial intelligence approaches have been increas-
ingly utilized in structural analysis and design problems over the past two decades. The main
applications involve the processing of datasets, which are gathered from experimentally de-
rived records or obtained numerically, in order to develop closed-form formulae or numerical
tools predicting quantities related to structural response and mechanical behaviour. Given that
datasets are difficult to assemble due to the limited available information and the high cost
entailed to enrich them, exhaustively processing the available data to produce the best possi-
ble prediction models is an essential task of particular interest. For specific applications, this
exhaustive computing task involves large numbers of iterations performed to train detailed pre-
diction models with large numbers of parameters. Despite the intense computational demands
of such problems, limited research work exists on the scaling-up of the utilized algorithms on
supercomputers. In this work, a distributed training and hyperparameter tuning algorithm
is proposed for the modelling of the shear strength of slender beams without stirrups. The
training dataset comprises results obtained from the detailed modelling and analysis of several
beams with non-linear finite elements using the Reconan software. The results presented in
this research work highlight the importance of optimally utilizing computational power for the
solution of such problems. The developed computer code is available on GitHub.

3878

Scalable ANNSs for Slender RC Beams

1 INTRODUCTION

Artificial intelligence techniques have emerged over the last decades as an effective and
efficient tool to predict analysis outputs for computationally demanding engineering problems.
Application areas requiring multiple analysis runs (design optimization, structural reliability,
etc.) have largely benefited from various computational approaches eliminating the need for
performing actual analyses by providing adequate estimations for the outputs of interest (e.g.
[1,2,3,4]).

The training process of an Artificial Intelligence model is itself a demanding task in terms
of computational resources. Particularly, an Artificial Neural Network can comprise millions
of parameters to train via iterative procedures, such as the stochastic gradient descent algo-
rithm. These algorithms yield data structures that frequently cannot fit in the GPU (graphics
processing unit) accelerators’” RAM; hence parallelization is vital for the accomplishment of
the training task, and obtaining accurate results. The optimization algorithms employed dur-
ing the training process of a deep network can be parallelized by following either of two main
routes. The first one is data parallelism [5, 6, 7], which foresees the splitting of the “batch of
samples” (utilized in each iteration) into a number of smaller mini-batches, which are processed
in parallel, depending on the number of available resources (GPUs). Alternatively, we may use
model parallelism [8], by partitioning the deep learning model on distributed GPUs.

Despite the fast-pacing growth of deep learning, along with the vast need for computational
resources, there are rather limited relevant engineering applications reported in the literature
[9, 10, 11, 12, 13], none of which concerns reinforced concrete (RC) structures or slender
beams. The purpose of this work is to investigate deep-learning algorithms for the prediction
of the shear strength of RC beams. For the needs of this research work, detailed 3D finite
element (FE) modelling of RC structures is adopted [14, 15, 16, 17, 18], in order to develop
a large database of results on slender RC beams without stirrups. The numerically generated
data set is then used to train models to predict the beams’ shear strength. A new algorithm
is designed and programmed, in order to be able to develop multiple input files (FE models)
and efficiently analyze them through the use of the software Reconan FEA [19]. The newly
developed algorithm (Reconan Multirun) and Reconan FEA were used to generate and analyse
approximately 36,000 slender RC beams without stirrups; the obtained results were used for the
training of the predictive models.

2 DATABASE ASSEMBLY

For each beam considered, 10 independent variables (input) and one dependent variable,
which is the load corresponding to the ultimate strength (output), are varied. Particularly, the
basic geometric variables are varied for each beam: the net span L (mm), the width b (mm), and
the effective depth d (mm) of the beam. Apart from these variables that affect the FE meshing of
the beams, strength and material related variables are also varied, and, particularly, f. (uniaxial
compressive strength of a cylindrical specimen in MPa), E.. (concrete Young modulus in MPa),
f+ (concrete tensile strength ratio), 3 (remaining shear capacity strength factor), £ (steel Young
modulus in MPa), f, (steel yielding stress in MPa), and p (tensile longitudinal reinforcement
ratio).

Sampling for the 10 independent variables was performed uniformly as per Table 1, with
the variables’ coefficient of variation ¢, = Z (standard deviation over mean) being kept within
the range 0.2 to 0.5 [20]. Hence, for each group of beams, different values for geometric
and strength variables were generated, and the overall database is finally constituted of 35,849

3879

Scalable ANNSs for Slender RC Beams

Table 1: Statistical metrics of independent variables.

L d b fc Ec ft B Es fy p
Minimum 1500.0 260.0 200.0 20.0 25000.0 0.020 0.020 1.90 x 10° 400.0 0.0010
Maximum 8700.0 1310.0 600.0 60.0 35000.0 0.100 0.050 2.10 x 10° 600.0 0.0200
Co 0.416 0.406 0.228 0.305 0.097 0.404 0.252 0.029 0.115 0.627

observations in total. Out of the total database population, 85% was used as a training set and
the remaining 15% was used for testing.

3 BASELINE AND MACHINE LEARNING MODELS

The predictive modelling of the database was implemented by utilizing four machine learn-
ing (ML) methods, and in particular Linear Regression (LR), Non Linear - higher order Re-
gression (NLR) [21], Random Forests (RF) [22] as implemented in [23], and Gradient Boosting
[24] (GB) as implemented in [25]. The performance of each ML method varies, and the Mean
Absolute Percentage Error (MAPE) [26] was used as a meaningful metric for engineering appli-
cations. The MAPE in the test set for the four methods was 10.843 (RF), 12.178 (GB), 22.036
(NLR), and 32.211 (LR). Random forests exhibit the lowest MAPE for the test set, while LR
the highest, which was expected as it is the simplest (linear) model used. Nonlinear regression
(NLR) exhibits higher error than RF and GB, however, the NLR model is useful due to the
closed-form formula that it generates. The distribution of ML models’ residuals exhibited a
shape close to the Gaussian, for all methods except the linear regression, which was skewed.
This is due to its inability to capture the non-linear behaviour of the variables included in the
model, highlighting the need for more complex ML models.

4 DISTRIBUTED DEEP LEARNING

PyTorch was used herein which is an “imperative style, high-performance deep learning li-
brary” [27], distinguished for scientific as well as industrial projects, due to a straightforward
yet efficient implementation of an automatic differentiation algorithm [28]. For multi-GPU
training, the Horovod [29] was implemented, a library that has been developed at Uber. Par-
ticularly, by using Horovod, one may take a single-GPU training script and efficiently scale it
to run across many GPUs in parallel. With MPI commands [30], each process is initialized
and is assigned its MPI rank in a straightforward manner, which is achieved with fewer code
changes compared to other approaches. Ultimately, Horovod scripts can run on a single-GPU,
multiple-GPUs, or even multiple hosts without any further code changes. Algorithms on various
experiments were tested for the needs of this research work on the Cyclone Supercomputer’,
utilizing PyTorch for computer vision as well as regression tasks?, highlighting the efficiency of
data parallelism, as well as the scaling-up capabilities compared with standard ML platforms,
such as Kaggle and Google Colab.

4.1 Parallel Stochastic Gradient Descent

In Stochastic Gradient Descent, at each iteration, a random data-point ; is selected, the Loss
Function for this data-point is differentiated, and then the weights for the entire network are

"https://hpcf.cyi.ac.cy/
Zhttps://github.com/CaSToRC-Cyl/artificial-intelligence-hpc

3880

Scalable ANNSs for Slender RC Beams

updated. In mini-batch Stochastic Gradient Descent, ¢ is the current “batch” of data, which is
a subset of all dataset indices. The parallelization is performed at this point, by updating the
weights for all batches in parallel. Hence, in Parallel Stochastic Gradient Descent, for each GPU
(in parallel) a random data-point is selected, for which the gradient is computed and the weights
are mixed. The average for the mixing of the weights can be implemented for this purpose,
or other methods, such as ensembles, AdaSum, etc. Afterwards, the update of the weights for
all GPUs takes place. In order to perform this operation in parallel, the utilization of MPI®
framework is required, so as to gather the results among all GPUs, reduce, and broadcast them
across all available GPUs again. This algorithmic procedure is described in Figure 1.

Vepoch n, do:
V batch i, do in parallel:

Vv GPU g, do: ®|5]1|9|213|®|/?]a|®|§]2|

dL; P

ow @[18|14] ®|18|14] @[18|14] @~|~1~8|14]
1

AL = b Z AL; * MPI allreduce = MPI_Reduce

i=1:b +
— MPI_Bcast
Wni1 = Wn __AVZSL -

ﬂLi =

Figure 1: Parallel Stochastic Gradient Descent.

In general, it applies that, when using larger batch sizes the procedure becomes faster, and
when adopting smaller batch sizes it becomes more accurate. In any case, the batch must fit into
the relevant hardware memory, so the utilization of a larger number of nodes is required when a
GPU cannot handle the batch size. Furthermore, in practice, the weights’ mix causes some ac-
curacy losses. However, all these aspects regarding the computational behaviour of the Parallel
Stochastic Gradient Descent procedure are not always absolutely valid, as the loss function is a
highly non-linear function of the Artificial Neural Network’s (ANN’s) weights and depends on
the dataset’s particular features, thus the computational procedure’s behaviour cannot be pre-
dicted. Therefore, the training of the network has to be performed by investigating a variety of
architectures. In order to effectively treat this issue, hyperparameter tuning is adopted in the
present work, and, ultimately, the training of a very large network on Cyclone supercomputer is
attempted.

4.2 Hyperparameter tuning

In order to investigate the effect of the network’s hyperparameters, the Ray-Tune* module of
PyTorch is implemented. Particularly, a number of ANNs are constructed by varying the batch
size, the drop-out ratio, the number of Epochs and neurons, as well as the learning rate. Subse-
quently, the training of the networks is conducted. Accordingly, for each training example, the
time for the training is recorded, while the final loss function and the ratio among the validation
and train loss Ratio V-T are computed. The results obtained are presented in the Appendix. This

3https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
“https://pytorch.org/tutorials/beginner/hyperparameter_tuning_tutorial html

3881

Scalable ANNSs for Slender RC Beams

is a time-consuming procedure, therefore, it was found useful to identify an optimal drop-out
region of ratios [31]. As depicted in Figure 2, it can be concluded that, for lower drop-out val-
ues, the corresponding values of the loss function are also lower. However, as will be explained
below, the drop-out could not be zero.

w
(2]

. .
. . ¢
30 * .
. ¢ .
X3 o .
25 L J L 2
— ® o L 4
o A 4 % o
g 20 * o * o .
= DA * %o
v 15 teo, *e® * ¢
@ e 5t o .
S ! 4 XS
10 W
5
0
0.00 0.05 0.10 0.15 0.20
Drop-Out

Figure 2: Ray-Tune results.

4.3 Combination of MPI & Horovod

During the training of an ANN, the loss function is automatically recorded, as loss is the
core function that is differentiated to update the weights. In engineering applications, the Mean
Squared Error (MSE) does not offer meaningful information, and the MAPE is being utilized as
a more practical metric. Accordingly, as the best ANN’s architecture is not known in advance,
and given that multiple experiments must be performed, it is necessary to record the MAPE
during training in real-time. However, as the data are split and reside at many GPUs, an operator
should be implemented that gathers the individual predictions to obtain an aggregated metric
for the dataset as a whole.

For this purpose, a mix of Horovod with MPI is proposed. In Figure 3, three code snippets
are depicted describing the implementation of such an operation. The overall operation starts
with the initialisation of vector pred in the code at the upper right part of Figure 3, which is used
later as a container of all results. The code at the upper left part imports the MPI module from
mpidpy and gets the rank of each GPU. Afterwards, as shown in the code at the bottom-left
part of Figure 3, after each step of the optimizer, a barrier is set to wait for all GPUs to finish
with their numerical processes. Then, the responses y_train_pred of each GPU are stored in
vector pred_i and, with the comm.gather command, all results are placed in pred_i. Finally,
an additional barrier is introduced to wait for all GPUs to finish and concatenate the results in
vector pred only for rank 0. At this stage, vector pred holds the concatenated predictions and
can be utilized to calculate the MAPE.

3882

Scalable ANNSs for Slender RC Beams

in range(len(pred_i

concatenate((pred,pred_i .detach().cpu().numpy()),

Figure 3: Combination of MPI and Horovod.

4.4 Parallel training

Figure 4 demonstrates the learning curves for the model without using a drop-out and with
a 10% drop-out. In the case of no drop-out (Figure 4, left), even though there is in general a
decreasing tendency in MAPE with the number of epochs, a number of significant peaks are
evident. This can be interpreted as an effect of the averaging of the weights in parallel, which
is a source of error. However, with the utilisation of a 10% drop-out (Figure 4, right), smoother
learning curves are achieved and the aforementioned phenomenon seems to be not activated.
Furthermore, it should be stressed that the validation curve for 10% drop-out is lower than the
training curve, which is very important for the generalisation of the results.

\ - frolin 35 4 i
5 n — frain
\ — yalidation = validation

25 4

loss (MAPE)

204

154

N N N N N T T T T T T T T
0 100 200 300 400 500 600 700 800 ° 250 500 750 1000 1250 1500

epochs-100 epochs-100
without dropout 10% dropout

Figure 4: Drop-out effect on the loss function during training in parallel. The model with
drop-out exhibits a validation loss history with lower values than the corresponding train curve.

It is noteworthy to state that a variety of experiments was performed to attain an optimal drop-
out ratio. Figure 5 presents results for a drop-out equal to 0.01. As can be seen at the right part
of Figure 5, when the validation curve is higher than the training curve, it practically stabilizes
around a constant value. This is helpful during training, as over-training of the network will not
cause over-fitting of the derived predictive model.

3883

Scalable ANNSs for Slender RC Beams

— frain

25 1 TN i 94 —frain
— yalidation

— validation

20

loss (MAPE)

0 1000 2000 3000 4000 5000 6000 7001 o 1000 2000 3000 4000 5000

epochs-100 epochs-1300
Figure 5: Results for low drop-out=0.01.

S CONCLUSIONS

The numerical experiments performed in the present work comprised networks with large
numbers of neurons, and thus, weights. For example, a network with 1000 neurons per layer
and 10 layers corresponds to approximately 10 million weights to be optimised. As the most
suitable network architecture is not known a-priori, several experiments need to be performed
towards establishing the minimum possible error. Hence, computational power is vital for the
best possible accuracy of the predictions.

It was also found that using PyTorch and Horovod as a functional solution for running deep-
learning models on Cyclone Supercomputer is a very efficient approach. Furthermore, accord-
ing to the parametric investigation performed in this research work, deep learning exhibited
high accuracy in comparison to other ML methods. The best loss attained (MAPE) was 5.94%,
while with Random Forests the corresponding loss was 10.7%, with Gradient Boosting 12.7% ,
Non-Linear Regression 24.0%, while Linear Regression had the worst numerical response with
32.3% loss.

The dataset under study comprised values with an increment of 10 kN and an average of
98.22 kN, thus an error %/222 = 5.091 inevitably occurs on average. Henceforth, any improve-
ment of the 5.94% loss attained would be trivial. This highlights the power of deep learning on
one hand, however, the computational demand for training as well as optimising the architecture
of such networks is very expensive. Distributed training made these operations possible herein,
achieving both efficient and accurate results.

ACKNOWLEDGEMENTS

This work used resources from Cyclone Supercomputer’ and was funded by the EuroCC
project GA 951732. The use of computer resources under project Ispre519s1 of The Cyprus
Institute is also acknowledged.

REFERENCES

[1] N. D. Lagaros, D. C. Charmpis, and M. Papadrakakis, “An adaptive neural network
strategy for improving the computational performance of evolutionary structural

Shttps://hpcf.cyi.ac.cy/

3884

Scalable ANNSs for Slender RC Beams

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

optimization,” Computer Methods in Applied Mechanics and Engineering, vol. 194,
no. 30, pp. 3374-3393, 2005. [Online]. Available: https://doi.org/10.1016/j.cma.2004.12.
023

V. Sundar and M. D. Shields, “Surrogate-enhanced stochastic search algorithms to
identify implicitly defined functions for reliability analysis,” Structural Safety, vol. 62,
pp- 1-11, 2016. [Online]. Available: https://doi.org/10.1016/].strusafe.2016.05.001

A. Roy, R. Manna, and S. Chakraborty, “Support vector regression based metamodeling
for structural reliability analysis,” Probabilistic Engineering Mechanics, vol. 55, pp.
78-89, 2019. [Online]. Available: https://doi.org/10.1016/j.probengmech.2018.11.001

K. Singh and R. Kapania, “Alga: Active learning-based genetic algorithm for accelerating
structural optimization,” AIAA Journal, vol. 59, no. 1, pp. 330-344, 2021. [Online].
Available: https://doi.org/10.2514/1.J059240

H. Li, A. Kadav, E. Kruus, and C. Ungureanu, “Malt: distributed data-parallelism for

existing ml applications,” in Proceedings of the Tenth European Conference on Computer
Systems, 2015, pp. 1-16.

C.-C. Chen, C.-L. Yang, and H.-Y. Cheng, “Efficient and robust parallel dnn training
through model parallelism on multi-gpu platform,” arXiv preprint arXiv:1809.02839,
2018.

C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dabhl,
“Measuring the effects of data parallelism on neural network training,” arXiv preprint
arXiv:1811.03600, 2018.

J. H. Park, G. Yun, M. Y. Chang, N. T. Nguyen, S. Lee, J. Choi, S. H. Noh, and Y.-r. Choi,
“Hetpipe: Enabling large dnn training on (whimpy) heterogeneous gpu clusters through
integration of pipelined model parallelism and data parallelism,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20), 2020, pp. 307-321.

D. Abueidda, S. Koric, and N. Sobh, “Topology optimization of 2d structures with nonlin-
earities using deep learning,” Computers and Structures, vol. 237, 2020.

A. Gorshenin and V. Kuzmin, “Analysis of configurations of Istm networks for medium-
term vector forecasting,” Informatika i ee Primeneniya, vol. 14, no. 1, pp. 10-16, 2020.

N. Do, A. Taberner, and B. Ruddy, “Design of a linear permanent magnet transverse flux
motor for needle-free jet injection,” 2019.

R. Miller, B. Moore, H. Viswanathan, and G. Srinivasan, “Image analysis using convolu-
tional neural networks for modeling 2d fracture propagation,” vol. 2017-November, 2017,
pp- 979-982.

A. Oishi and G. Yagawa, “Computational mechanics enhanced by deep learning,”
Computer Methods in Applied Mechanics and Engineering, vol. 327, pp. 327-351, 2017,
advances in Computational Mechanics and Scientific Computation—the Cutting Edge.
[Online]. Available: https://doi.org/10.1016/j.cma.2017.08.040

3885

Scalable ANNSs for Slender RC Beams

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

G. Markou and M. Papadrakakis, “Accurate and computationally efficient 3d finite element
modeling of rc structures,” Computers & Concrete, vol. 12, 2013.

C. Mourlas, M. Papadrakakis, and G. Markou, “A computationally efficient model for the
cyclic behavior of reinforced concrete structural members,” Engineering Structures, vol.
141, 2017.

G. Markou, C. Mourlas, H. Bark, and M. Papadrakakis, “Simplified hymod non-linear
simulations of a full-scale multistory retrofitted rc structure that undergoes multiple cyclic
excitations — an infill rc wall retrofitting study,” Engineering Structures, vol. 176, 2018.

G. Markou, C. Mourlas, and M. Papadrakakis, “A hybrid finite element model (hymod) for
the non-linear 3d cyclic simulation of rc structure,” International Journal of computational
Methods, vol. 16, 2019.

G. Markou and W. Roeloffze, “Finite element modelling of plain and reinforced concrete
specimens with the kotsovos and pavlovic material model, smeared crack approach and
fine meshes,” International Journal of Damage Mechanics, 2021.

G. Markou, “v2.00,” Reconan, F.E.A. - User’s Manual, 2020.

L. H. Koopmans, D. B. Owen, and J. I. Rosenblatt, “Confidence Intervals for the Coeffi-
cient of Variation for the Normal and Log Normal Distributions,” Biometrika, 2006.

N. P. Bakas, “NOESYS-AI Regression: A generic framework for predictive
modeling and sensitivity analysis,” 2018. [Online]. Available: https://noesys.net/
regression-and-sensitivity-analysis/

L. Breiman, “Random Forrests,” Machine learning, vol. 45, no. 1, pp. 5-32, 2001.

B. Sadeghi, “Decisiontree.jl,” 2013. [Online]. Available: https://github.com/bensadeghi/
DecisionTree.jl

J. H. Friedman, “Stochastic gradient boosting,” Computational statistics & data analysis,
vol. 38, no. 4, pp. 367-378, 2002.

B. Xu and T. Chen, “Xgboost.jl,” 2014. [Online]. Available: https://github.com/dmlc/
XGBoost.jl

T. Dimopoulos, H. Tyralis, N. P. Bakas, and D. Hadjimitsis, “Accuracy measurement of
Random Forests and Linear Regression for mass appraisal models that estimate the prices

of residential apartments in Nicosia, Cyprus,” Advances in Geosciences, vol. 45, pp. 377-
382, 2018.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep
learning library,” arXiv preprint arXiv:1912.01703, 2019.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

3886

Scalable ANNSs for Slender RC Beams

[29] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep learning in Tensor-
Flow,” arXiv preprint arXiv:1802.05799, 2018.

[30] L. Clarke, I. Glendinning, and R. Hempel, “The mpi message passing interface standard,”
in Programming environments for massively parallel distributed systems. Springer, 1994,
pp- 213-218.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929-1958, 2014.

3887

Scalable ANNSs for Slender RC Beams

APPENDIX: HYPERPARAMETER TUNING RESULTS

Loss Batch size | Drop-out Epochs #neurons | Learning Rate | Ratio V-T Time
7.92 4096 0.0103 1418 1906 0.00086 0.849 981
8.13 256 0.0116 906 228 0.00034 0.872 679
8.35 512 0.0130 681 201 0.00035 0.755 343
8.50 2048 0.0068 677 580 0.00030 0.947 262
8.55 2048 0.0071 1193 566 0.00038 1.098 461
8.65 4096 0.0055 1065 1511 0.00072 1.092 632
8.68 256 0.0011 1358 758 0.00013 2.761 1017
8.71 512 0.0016 1047 1564 0.00021 2.313 730
8.72 1024 0.0105 1244 520 0.00015 1.009 500
8.72 2048 0.0086 1272 779 0.00096 1.077 510
8.73 256 0.0042 1570 1852 0.00075 1.652 1725
8.74 1024 0.0102 763 479 0.00055 0.992 309
8.78 512 0.0103 803 794 0.00002 0.841 415
8.79 4096 0.0036 691 1969 0.00088 0.998 490
8.83 4096 0.0094 1291 1305 0.00028 1.085 698
8.84 2048 0.0079 1318 1184 0.00064 1.022 608
8.84 4096 0.0108 1272 630 0.00090 0.933 594
8.88 4096 0.0122 1352 1110 0.00040 1.000 718
8.91 2048 0.0092 1320 1044 0.00010 1.062 565
8.92 512 0.0019 1039 596 0.00027 2.049 501
8.94 512 0.0085 683 1435 0.00096 1.071 442
8.97 512 0.0182 950 1669 0.00098 0.889 694
8.98 1024 0.0144 788 880 0.00016 0.926 317
8.99 4096 0.0137 956 1221 0.00018 0.892 527
8.99 2048 0.0095 635 1403 0.00039 1.019 328
9.00 4096 0.0146 745 744 0.00046 0.780 353
9.02 1024 0.0108 610 1465 0.00095 0.886 346
9.05 1024 0.0134 1473 530 0.00037 1.074 586
9.05 4096 0.0032 854 686 0.00035 1.202 389
9.05 2048 0.0014 796 1266 0.00014 1.784 386
9.07 512 0.0154 770 1411 0.00094 0.947 473
9.07 2048 0.0173 888 1397 0.00097 0.832 448
9.08 2048 0.0044 963 1245 0.00066 1.464 442
9.09 4096 0.0035 604 1955 0.00097 0.972 440
9.10 1024 0.0016 3177 711 0.00011 2.595 1186
9.11 1024 0.0183 1220 1471 0.00079 0.953 691
9.11 2048 0.0050 1393 1455 0.00045 1.309 737
9.13 2048 0.0112 1061 913 0.00086 1.046 434
9.13 4096 0.0103 858 1120 0.00018 0.912 438
9.15 1024 0.0137 443 680 0.00009 0.742 177
9.15 4096 0.0123 688 1887 0.00083 0.862 484
9.15 4096 0.0154 1473 1157 0.00052 0.970 786
9.17 1024 0.0030 1600 1363 0.00098 1.862 870
9.18 2048 0.0041 821 931 0.00096 1.364 330
9.18 2048 0.0149 1477 1410 0.00015 1.090 729
9.18 4096 0.0024 773 1290 0.00023 1.445 419
9.19 1024 0.0163 778 404 0.00042 0.840 324
9.19 512 0.0104 805 975 0.00010 1.137 406
9.20 4096 0.0187 1232 1076 0.00011 0.761 603
9.21 1024 0.0159 309 376 0.00074 0.701 126

3888

Scalable ANNSs for Slender RC Beams

9.21 2048 0.0048 568 1873 0.00027 1.101 384
9.23 2048 0.0071 807 726 0.00042 1.143 320
9.23 2048 0.0101 1059 1917 0.00091 0.950 726
9.25 1024 0.0150 788 772 0.00031 0.956 297
9.26 2048 0.0074 879 1037 0.00097 1.180 378
9.27 512 0.0195 860 723 0.00010 0.855 443
9.28 1024 0.0131 516 820 0.00003 0.719 203
9.28 4096 0.0158 1402 557 0.00013 0.776 702
9.29 512 0.0154 1304 644 0.00093 1.109 639
9.30 2048 0.0050 1129 1441 0.00071 1.366 576
9.32 256 0.0092 1905 577 0.00020 1.490 1440
9.33 2048 0.0058 993 714 0.00019 1.137 358
9.34 2048 0.0031 959 1288 0.00045 1.563 447
9.35 256 0.0196 963 589 0.00038 0.960 715
9.36 2048 0.0098 716 1195 0.00050 1.068 316
9.37 512 0.0151 652 1756 0.00087 0.973 495
9.38 512 0.0116 905 816 0.00065 1.178 447
9.39 1024 0.0148 1128 1878 0.00090 0.967 783
9.41 2048 0.0023 1413 1650 0.00072 2.149 829
9.41 512 0.0136 229 695 0.00094 0.837 115
9.41 1024 0.0102 1412 610 0.00051 1.285 538
9.43 1024 0.0175 1441 1129 0.00094 1.026 680
9.43 512 0.0046 1225 1866 0.00046 1.829 980
9.44 2048 0.0193 513 1841 0.00023 0.797 334
9.44 4096 0.0042 1369 1646 0.00027 1.487 861
9.44 512 0.0066 1341 1767 0.00060 1.586 1056
9.44 1024 0.0198 1025 1113 0.00094 0.951 474
9.45 256 0.0281 495 652 0.00048 0.763 369
9.45 512 0.0180 619 1870 0.00012 0.991 506
9.45 512 0.0019 4715 525 0.00041 2.939 2458
9.46 2048 0.0014 1230 747 0.00067 2.091 464
9.47 2048 0.0100 792 1063 0.00030 1.042 338
9.48 256 0.0225 260 533 0.00066 0.754 194
9.48 512 0.0143 1114 1061 0.00052 1.185 588
9.49 2048 0.0105 1358 946 0.00094 1.224 509
9.49 1024 0.0163 1292 1825 0.00094 0.957 913
9.49 4096 0.0189 1355 1187 0.00036 0.892 749
9.50 2048 0.0194 792 1564 0.00053 0.674 430
9.51 512 0.0133 1324 1587 0.00095 1.198 942
9.51 1024 0.0110 1042 1044 0.00053 1.262 445
9.52 512 0.0145 1324 1426 0.00021 1.253 825
9.52 1024 0.0146 1150 667 0.00063 1.073 422
9.53 2048 0.0111 1448 931 0.00046 1.231 586
9.53 2048 0.0187 1065 1837 0.00067 0.904 708
9.53 4096 0.0089 633 1181 0.00038 0.951 327
9.53 2048 0.0051 532 530 0.00039 1.109 191
9.54 2048 0.0195 941 1357 0.00039 0.938 473
9.54 1024 0.0122 1070 885 0.00082 1.195 447
9.54 1024 0.0014 3511 795 0.00024 2.938 1423
9.54 4096 0.0075 1227 1781 0.00090 0.980 841
9.54 1024 0.0025 1966 1495 0.00063 2.386 1100

3889

Scalable ANNSs for Slender RC Beams

9.54 512 0.0241 295 515 0.00095 0.713 151
9.54 2048 0.0115 1155 1593 0.00070 1.117 660
9.55 4096 0.0182 586 946 0.00080 0.758 284
9.56 512 0.0053 1486 1014 0.00039 1.836 760
9.57 512 0.0021 1315 1058 0.00024 2.414 714
9.58 1024 0.0028 1137 1099 0.00058 2.039 523
9.58 1024 0.0037 1351 1345 0.00034 1.902 733
9.60 1024 0.0144 923 878 0.00086 1.079 378
9.61 512 0.0098 1354 526 0.00064 1.358 679
9.61 512 0.0274 668 992 0.00059 0.843 345
9.61 1024 0.0128 905 1632 0.00060 1.183 540
9.62 2048 0.0027 503 1779 0.00053 1.337 322
9.62 512 0.0116 1232 752 0.00026 1.291 633
9.63 256 0.0046 1132 1745 0.00016 1.939 1147
9.64 512 0.0336 408 768 0.00048 0.706 215
9.65 1024 0.0141 779 1132 0.00097 1.044 347
9.65 512 0.0185 675 1059 0.00041 1.008 339
9.65 512 0.0071 1171 912 0.00042 1.557 570
9.65 512 0.0227 674 194 0.00050 0.742 341
9.68 1024 0.0176 1035 1645 0.00068 1.037 666
9.69 4096 0.0078 961 1317 0.00061 1.197 551
9.69 1024 0.0103 1147 811 0.00032 1.287 454
9.69 256 0.0277 642 449 0.00025 0.793 476
9.69 1024 0.0116 1148 1601 0.00093 1.300 705
9.69 512 0.0136 585 1259 0.00043 1.116 328
9.71 4096 0.0120 1495 987 0.00064 1.107 719
9.72 256 0.0179 977 822 0.00010 1.068 738
9.72 4096 0.0023 863 795 0.00040 1.364 418
9.73 512 0.0026 3663 829 0.00014 2.670 1876
9.76 2048 0.0056 1358 1024 0.00066 1.513 560
9.77 512 0.0118 1393 1786 0.00053 1.374 1086
9.78 256 0.0013 4018 1386 0.00040 3.475 3436
9.79 1024 0.0184 881 1673 0.00020 1.060 561
9.79 4096 0.0117 1145 1912 0.00097 0.797 801
9.79 4096 0.0176 646 1405 0.00058 0.825 350
9.80 4096 0.0091 1292 1126 0.00060 1.154 647
9.80 4096 0.0120 631 1236 0.00092 0.920 325
9.81 512 0.0056 971 1278 0.00040 1.645 559
9.81 4096 0.0186 734 1985 0.00054 0.809 544
9.82 1024 0.0019 3403 672 0.00096 2.983 1390
9.83 512 0.0061 703 1132 0.00082 1.529 368
9.85 4096 0.0189 1478 1977 0.00049 0.951 1087
9.85 512 0.0130 828 1039 0.00060 1.196 426
9.85 1024 0.0147 1320 1253 0.00070 1.227 687
9.85 512 0.0149 519 894 0.00057 1.043 269
9.85 1024 0.0127 931 1211 0.00036 1.190 470
9.87 1024 0.0122 651 1545 0.00073 1.147 384
9.88 1024 0.0084 1342 1357 0.00022 1.567 724
9.88 512 0.0200 1300 1481 0.00076 1.102 858
9.89 1024 0.0125 831 977 0.00039 1.173 356
9.90 256 0.0177 103 945 0.00042 0.724 78

3890

Scalable ANNSs for Slender RC Beams

9.94 1024 0.0157 1420 1706 0.00020 1.268 918
9.95 1024 0.0185 875 1198 0.00075 1.024 453
9.95 1024 0.0047 1308 1208 0.00066 1.799 645
9.97 1024 0.0141 1351 1964 0.00012 1.315 1034
9.97 256 0.0361 656 638 0.00005 0.674 484
9.98 4096 0.0125 524 1680 0.00036 0.913 337
10.02 2048 0.0049 503 1808 0.00076 1.022 321
10.05 512 0.0309 607 225 0.00016 0.649 315
10.05 2048 0.0130 952 1242 0.00075 1.044 456
10.06 2048 0.0111 827 1697 0.00058 1.077 499
10.07 4096 0.0052 1105 1057 0.00063 1.295 572
10.08 1024 0.0164 1327 1600 0.00021 1.228 800
10.11 512 0.0116 1463 1972 0.00016 1.490 1317
10.12 4096 0.0077 923 1549 0.00065 1.135 572
10.13 256 0.0135 2635 1221 0.00044 1.477 2121
10.14 4096 0.0109 1227 1867 0.00058 1.175 845
10.14 4096 0.0185 822 1897 0.00081 0.786 574
10.14 2048 0.0127 923 1464 0.00073 1.030 501
10.15 1024 0.0162 1479 1675 0.00063 1.244 960
10.16 512 0.0015 4397 1666 0.00040 3.699 3244
10.18 512 0.0148 509 382 0.00003 0.680 251
10.22 256 0.0234 150 413 0.00014 0.648 113
10.22 1024 0.0165 3996 826 0.00018 1.489 1564
10.28 4096 0.0166 806 1132 0.00085 0.926 394
10.31 256 0.0402 222 794 0.00015 0.627 165
10.34 1024 0.0148 1329 1465 0.00034 1.316 750
10.36 256 0.0388 205 591 0.00088 0.653 156
10.46 1024 0.0182 240 422 0.00016 0.680 99
10.48 512 0.0174 1486 1345 0.00027 1.304 913
10.51 256 0.0029 4573 1540 0.00027 2.930 4303
10.60 1024 0.0190 1268 1809 0.00018 1.227 865
10.62 512 0.0305 978 766 0.00002 0.728 496
10.62 4096 0.0086 724 1294 0.00082 1.021 393
10.63 1024 0.0056 4784 1079 0.00043 2.569 2007
10.66 1024 0.0181 2242 1607 0.00024 1.465 1365
10.68 1024 0.0169 771 1243 0.00094 0.888 402
10.69 1024 0.0464 960 423 0.00021 0.664 380
10.72 4096 0.0199 543 1776 0.00082 0.832 351
10.75 256 0.0173 594 366 0.00001 0.679 458
10.78 512 0.0451 425 533 0.00087 0.690 216
10.79 2048 0.0095 650 1369 0.00081 1.079 331
10.88 4096 0.0185 586 752 0.00096 0.889 260
10.89 1024 0.0427 924 938 0.00058 0.795 404
10.90 512 0.0406 663 935 0.00037 0.780 344
10.91 1024 0.0116 607 527 0.00002 0.746 237
11.27 512 0.0185 3795 1472 0.00030 1.817 2587
11.30 512 0.0461 877 702 0.00007 0.703 457
11.46 1024 0.0290 285 875 0.00006 0.668 123
11.76 512 0.0550 810 627 0.00029 0.734 407
11.76 512 0.0496 455 443 0.00020 0.670 226
11.78 2048 0.0195 764 1965 0.00070 0.938 550

3891

Scalable ANNSs for Slender RC Beams

11.79 1024 0.0238 156 691 0.00054 0.741 61
12.68 1024 0.0252 639 193 0.00021 0.811 244
12.76 1024 0.0149 289 681 0.00003 0.762 111
13.01 1024 0.0460 666 992 0.00003 0.709 289
13.46 256 0.0758 477 662 0.00019 0.681 375
13.61 1024 0.0305 817 140 0.00057 0.903 323
14.29 256 0.0234 520 129 0.00005 0.797 388
14.46 256 0.0830 368 408 0.00016 0.650 284
14.84 256 0.0427 295 350 0.00003 0.668 222
14.86 512 0.0805 203 525 0.00044 0.641 103
15.04 1024 0.0180 181 779 0.00003 0.773 70
15.09 512 0.0803 819 763 0.00026 0.791 427
15.18 1024 0.0113 149 326 0.00009 0.809 61
15.22 256 0.0377 766 309 0.00001 0.702 568
15.27 512 0.0884 399 984 0.00018 0.700 212
15.39 1024 0.0687 925 645 0.00007 0.759 366
15.61 1024 0.0474 377 646 0.00003 0.693 146
16.12 1024 0.0407 673 161 0.00015 0.831 258
16.17 1024 0.0900 488 829 0.00024 0.724 203
17.00 256 0.1037 213 582 0.00073 0.701 160
17.16 256 0.0100 470 102 0.00002 0.816 352
17.49 1024 0.0184 241 193 0.00007 0.800 94
17.77 512 0.0959 868 401 0.00009 0.754 409
18.28 256 0.0959 846 368 0.00006 0.768 619
18.50 1024 0.1157 773 556 0.00086 0.783 317
18.74 1024 0.0683 646 183 0.00036 0.869 249
18.82 256 0.0340 585 156 0.00002 0.770 443
19.07 256 0.0544 156 726 0.00002 0.738 117
19.24 1024 0.0219 833 125 0.00003 0.772 323
19.28 256 0.1074 404 514 0.00049 0.819 302
20.93 1024 0.0958 284 529 0.00010 0.739 113
21.68 1024 0.1270 564 803 0.00044 0.848 225
21.77 256 0.1230 555 257 0.00043 0.866 424
22.42 1024 0.0933 701 205 0.00009 0.807 269
22.55 512 0.0722 934 313 0.00001 0.801 478
22.89 512 0.0562 421 119 0.00009 0.869 207
23.82 512 0.1151 504 410 0.00007 0.842 251
24.10 256 0.1023 852 166 0.00005 0.875 645
24.22 256 0.1415 203 560 0.00055 0.843 152
25.58 1024 0.1513 748 312 0.00041 0.894 294
25.61 256 0.0635 532 213 0.00001 0.802 391
26.32 256 0.1588 565 926 0.00008 0.907 433
26.78 1024 0.1037 604 202 0.00008 0.874 244
27.34 1024 0.1159 805 797 0.00002 0.906 332
27.36 256 0.0853 532 272 0.00001 0.836 390
28.08 1024 0.1268 922 199 0.00011 0.941 362
28.22 512 0.0518 100 393 0.00001 0.791 51
28.39 1024 0.0995 864 322 0.00002 0.867 351
29.32 1024 0.1013 561 507 0.00002 0.886 220
29.84 512 0.1602 219 827 0.00009 0.875 115
31.17 512 0.1376 187 413 0.00005 0.826 90

3892

Scalable ANNSs for Slender RC Beams

32.02 1024 0.1021 235 100 0.00017 0.889 91
33.13 256 0.1951 225 929 0.00007 0.928 170
33.86 1024 0.0792 200 217 0.00001 0.814 79
34.07 1024 0.1454 880 648 0.00002 1.037 358
35.30 512 0.1691 222 367 0.00007 0.892 110
35.33 512 0.1899 866 311 0.00062 1.143 429
36.68 1024 0.1930 415 791 0.00007 0.994 168
39.03 256 0.0016 3444 1917 0.00017 0.546 1
40.97 1024 0.1668 108 463 0.00002 0.889 43
87.95 2048 0.0031 1422 1241 0.00044 0.757 1

3893

