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Abstract. Data-driven models employing artificial intelligence approaches have been increas-
ingly utilized in structural analysis and design problems over the past two decades. The main
applications involve the processing of datasets, which are gathered from experimentally de-
rived records or obtained numerically, in order to develop closed-form formulae or numerical
tools predicting quantities related to structural response and mechanical behaviour. Given that
datasets are difficult to assemble due to the limited available information and the high cost
entailed to enrich them, exhaustively processing the available data to produce the best possi-
ble prediction models is an essential task of particular interest. For specific applications, this
exhaustive computing task involves large numbers of iterations performed to train detailed pre-
diction models with large numbers of parameters. Despite the intense computational demands
of such problems, limited research work exists on the scaling-up of the utilized algorithms on
supercomputers. In this work, a distributed training and hyperparameter tuning algorithm
is proposed for the modelling of the shear strength of slender beams without stirrups. The
training dataset comprises results obtained from the detailed modelling and analysis of several
beams with non-linear finite elements using the Reconan software. The results presented in
this research work highlight the importance of optimally utilizing computational power for the
solution of such problems. The developed computer code is available on GitHub.
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1 INTRODUCTION

Artificial intelligence techniques have emerged over the last decades as an effective and

efficient tool to predict analysis outputs for computationally demanding engineering problems.

Application areas requiring multiple analysis runs (design optimization, structural reliability,

etc.) have largely benefited from various computational approaches eliminating the need for

performing actual analyses by providing adequate estimations for the outputs of interest (e.g.

[1, 2, 3, 4]).

The training process of an Artificial Intelligence model is itself a demanding task in terms

of computational resources. Particularly, an Artificial Neural Network can comprise millions

of parameters to train via iterative procedures, such as the stochastic gradient descent algo-

rithm. These algorithms yield data structures that frequently cannot fit in the GPU (graphics

processing unit) accelerators’ RAM; hence parallelization is vital for the accomplishment of

the training task, and obtaining accurate results. The optimization algorithms employed dur-

ing the training process of a deep network can be parallelized by following either of two main

routes. The first one is data parallelism [5, 6, 7], which foresees the splitting of the “batch of

samples” (utilized in each iteration) into a number of smaller mini-batches, which are processed

in parallel, depending on the number of available resources (GPUs). Alternatively, we may use

model parallelism [8], by partitioning the deep learning model on distributed GPUs.

Despite the fast-pacing growth of deep learning, along with the vast need for computational

resources, there are rather limited relevant engineering applications reported in the literature

[9, 10, 11, 12, 13], none of which concerns reinforced concrete (RC) structures or slender

beams. The purpose of this work is to investigate deep-learning algorithms for the prediction

of the shear strength of RC beams. For the needs of this research work, detailed 3D finite

element (FE) modelling of RC structures is adopted [14, 15, 16, 17, 18], in order to develop

a large database of results on slender RC beams without stirrups. The numerically generated

data set is then used to train models to predict the beams’ shear strength. A new algorithm

is designed and programmed, in order to be able to develop multiple input files (FE models)

and efficiently analyze them through the use of the software Reconan FEA [19]. The newly

developed algorithm (Reconan Multirun) and Reconan FEA were used to generate and analyse

approximately 36,000 slender RC beams without stirrups; the obtained results were used for the

training of the predictive models.

2 DATABASE ASSEMBLY

For each beam considered, 10 independent variables (input) and one dependent variable,

which is the load corresponding to the ultimate strength (output), are varied. Particularly, the

basic geometric variables are varied for each beam: the net span L (mm), the width b (mm), and

the effective depth d (mm) of the beam. Apart from these variables that affect the FE meshing of

the beams, strength and material related variables are also varied, and, particularly, fc (uniaxial

compressive strength of a cylindrical specimen in MPa), Ec (concrete Young modulus in MPa),

ft (concrete tensile strength ratio), β (remaining shear capacity strength factor), Es (steel Young

modulus in MPa), fy (steel yielding stress in MPa), and ρ (tensile longitudinal reinforcement

ratio).

Sampling for the 10 independent variables was performed uniformly as per Table 1, with

the variables’ coefficient of variation cv =
σ
m

(standard deviation over mean) being kept within

the range 0.2 to 0.5 [20]. Hence, for each group of beams, different values for geometric

and strength variables were generated, and the overall database is finally constituted of 35,849
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Table 1: Statistical metrics of independent variables.

L d b fc Ec ft β Es fy ρ

Minimum 1500.0 260.0 200.0 20.0 25000.0 0.020 0.020 1.90× 105 400.0 0.0010

Maximum 8700.0 1310.0 600.0 60.0 35000.0 0.100 0.050 2.10× 105 600.0 0.0200

cv 0.416 0.406 0.228 0.305 0.097 0.404 0.252 0.029 0.115 0.627

observations in total. Out of the total database population, 85% was used as a training set and

the remaining 15% was used for testing.

3 BASELINE AND MACHINE LEARNING MODELS

The predictive modelling of the database was implemented by utilizing four machine learn-

ing (ML) methods, and in particular Linear Regression (LR), Non Linear - higher order Re-

gression (NLR) [21], Random Forests (RF) [22] as implemented in [23], and Gradient Boosting

[24] (GB) as implemented in [25]. The performance of each ML method varies, and the Mean

Absolute Percentage Error (MAPE) [26] was used as a meaningful metric for engineering appli-

cations. The MAPE in the test set for the four methods was 10.843 (RF), 12.178 (GB), 22.036

(NLR), and 32.211 (LR). Random forests exhibit the lowest MAPE for the test set, while LR

the highest, which was expected as it is the simplest (linear) model used. Nonlinear regression

(NLR) exhibits higher error than RF and GB, however, the NLR model is useful due to the

closed-form formula that it generates. The distribution of ML models’ residuals exhibited a

shape close to the Gaussian, for all methods except the linear regression, which was skewed.

This is due to its inability to capture the non-linear behaviour of the variables included in the

model, highlighting the need for more complex ML models.

4 DISTRIBUTED DEEP LEARNING

PyTorch was used herein which is an “imperative style, high-performance deep learning li-

brary” [27], distinguished for scientific as well as industrial projects, due to a straightforward

yet efficient implementation of an automatic differentiation algorithm [28]. For multi-GPU

training, the Horovod [29] was implemented, a library that has been developed at Uber. Par-

ticularly, by using Horovod, one may take a single-GPU training script and efficiently scale it

to run across many GPUs in parallel. With MPI commands [30], each process is initialized

and is assigned its MPI rank in a straightforward manner, which is achieved with fewer code

changes compared to other approaches. Ultimately, Horovod scripts can run on a single-GPU,

multiple-GPUs, or even multiple hosts without any further code changes. Algorithms on various

experiments were tested for the needs of this research work on the Cyclone Supercomputer1,

utilizing PyTorch for computer vision as well as regression tasks2, highlighting the efficiency of

data parallelism, as well as the scaling-up capabilities compared with standard ML platforms,

such as Kaggle and Google Colab.

4.1 Parallel Stochastic Gradient Descent

In Stochastic Gradient Descent, at each iteration, a random data-point i is selected, the Loss

Function for this data-point is differentiated, and then the weights for the entire network are

1https://hpcf.cyi.ac.cy/
2https://github.com/CaSToRC-CyI/artificial-intelligence-hpc
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updated. In mini-batch Stochastic Gradient Descent, i is the current “batch” of data, which is

a subset of all dataset indices. The parallelization is performed at this point, by updating the

weights for all batches in parallel. Hence, in Parallel Stochastic Gradient Descent, for each GPU

(in parallel) a random data-point is selected, for which the gradient is computed and the weights

are mixed. The average for the mixing of the weights can be implemented for this purpose,

or other methods, such as ensembles, AdaSum, etc. Afterwards, the update of the weights for

all GPUs takes place. In order to perform this operation in parallel, the utilization of MPI3

framework is required, so as to gather the results among all GPUs, reduce, and broadcast them

across all available GPUs again. This algorithmic procedure is described in Figure 1.

Figure 1: Parallel Stochastic Gradient Descent.

In general, it applies that, when using larger batch sizes the procedure becomes faster, and

when adopting smaller batch sizes it becomes more accurate. In any case, the batch must fit into

the relevant hardware memory, so the utilization of a larger number of nodes is required when a

GPU cannot handle the batch size. Furthermore, in practice, the weights’ mix causes some ac-

curacy losses. However, all these aspects regarding the computational behaviour of the Parallel

Stochastic Gradient Descent procedure are not always absolutely valid, as the loss function is a

highly non-linear function of the Artificial Neural Network’s (ANN’s) weights and depends on

the dataset’s particular features, thus the computational procedure’s behaviour cannot be pre-

dicted. Therefore, the training of the network has to be performed by investigating a variety of

architectures. In order to effectively treat this issue, hyperparameter tuning is adopted in the

present work, and, ultimately, the training of a very large network on Cyclone supercomputer is

attempted.

4.2 Hyperparameter tuning

In order to investigate the effect of the network’s hyperparameters, the Ray-Tune4 module of

PyTorch is implemented. Particularly, a number of ANNs are constructed by varying the batch

size, the drop-out ratio, the number of Epochs and neurons, as well as the learning rate. Subse-

quently, the training of the networks is conducted. Accordingly, for each training example, the

time for the training is recorded, while the final loss function and the ratio among the validation

and train loss Ratio V-T are computed. The results obtained are presented in the Appendix. This

3https://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/
4https://pytorch.org/tutorials/beginner/hyperparameter tuning tutorial.html
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is a time-consuming procedure, therefore, it was found useful to identify an optimal drop-out

region of ratios [31]. As depicted in Figure 2, it can be concluded that, for lower drop-out val-

ues, the corresponding values of the loss function are also lower. However, as will be explained

below, the drop-out could not be zero.

Figure 2: Ray-Tune results.

4.3 Combination of MPI & Horovod

During the training of an ANN, the loss function is automatically recorded, as loss is the

core function that is differentiated to update the weights. In engineering applications, the Mean

Squared Error (MSE) does not offer meaningful information, and the MAPE is being utilized as

a more practical metric. Accordingly, as the best ANN’s architecture is not known in advance,

and given that multiple experiments must be performed, it is necessary to record the MAPE

during training in real-time. However, as the data are split and reside at many GPUs, an operator

should be implemented that gathers the individual predictions to obtain an aggregated metric

for the dataset as a whole.

For this purpose, a mix of Horovod with MPI is proposed. In Figure 3, three code snippets

are depicted describing the implementation of such an operation. The overall operation starts

with the initialisation of vector pred in the code at the upper right part of Figure 3, which is used

later as a container of all results. The code at the upper left part imports the MPI module from

mpi4py and gets the rank of each GPU. Afterwards, as shown in the code at the bottom-left

part of Figure 3, after each step of the optimizer, a barrier is set to wait for all GPUs to finish

with their numerical processes. Then, the responses y train pred of each GPU are stored in

vector pred i and, with the comm.gather command, all results are placed in pred i. Finally,

an additional barrier is introduced to wait for all GPUs to finish and concatenate the results in

vector pred only for rank 0. At this stage, vector pred holds the concatenated predictions and

can be utilized to calculate the MAPE.
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Figure 3: Combination of MPI and Horovod.

4.4 Parallel training

Figure 4 demonstrates the learning curves for the model without using a drop-out and with

a 10% drop-out. In the case of no drop-out (Figure 4, left), even though there is in general a

decreasing tendency in MAPE with the number of epochs, a number of significant peaks are

evident. This can be interpreted as an effect of the averaging of the weights in parallel, which

is a source of error. However, with the utilisation of a 10% drop-out (Figure 4, right), smoother

learning curves are achieved and the aforementioned phenomenon seems to be not activated.

Furthermore, it should be stressed that the validation curve for 10% drop-out is lower than the

training curve, which is very important for the generalisation of the results.

Figure 4: Drop-out effect on the loss function during training in parallel. The model with

drop-out exhibits a validation loss history with lower values than the corresponding train curve.

It is noteworthy to state that a variety of experiments was performed to attain an optimal drop-

out ratio. Figure 5 presents results for a drop-out equal to 0.01. As can be seen at the right part

of Figure 5, when the validation curve is higher than the training curve, it practically stabilizes

around a constant value. This is helpful during training, as over-training of the network will not

cause over-fitting of the derived predictive model.
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Figure 5: Results for low drop-out=0.01.

5 CONCLUSIONS

The numerical experiments performed in the present work comprised networks with large

numbers of neurons, and thus, weights. For example, a network with 1000 neurons per layer

and 10 layers corresponds to approximately 10 million weights to be optimised. As the most

suitable network architecture is not known a-priori, several experiments need to be performed

towards establishing the minimum possible error. Hence, computational power is vital for the

best possible accuracy of the predictions.

It was also found that using PyTorch and Horovod as a functional solution for running deep-

learning models on Cyclone Supercomputer is a very efficient approach. Furthermore, accord-

ing to the parametric investigation performed in this research work, deep learning exhibited

high accuracy in comparison to other ML methods. The best loss attained (MAPE) was 5.94%,

while with Random Forests the corresponding loss was 10.7%, with Gradient Boosting 12.7% ,

Non-Linear Regression 24.0%, while Linear Regression had the worst numerical response with

32.3% loss.

The dataset under study comprised values with an increment of 10 kN and an average of

98.22 kN, thus an error
10/2
98.22

= 5.091 inevitably occurs on average. Henceforth, any improve-

ment of the 5.94% loss attained would be trivial. This highlights the power of deep learning on

one hand, however, the computational demand for training as well as optimising the architecture

of such networks is very expensive. Distributed training made these operations possible herein,

achieving both efficient and accurate results.
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