Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14279/3165
Title: | Ultrafiltration optimization for the recovery of β-glucan from oat mill waste | Authors: | Galanakis, Charis M. Patsioura, Anna Gekas, Vassilis |
Major Field of Science: | Natural Sciences | Field Category: | Chemical Sciences | Keywords: | Ultrafiltration;Beta glucan;Macromolecules;Dietary fiber;Polysaccharides;Operational features | Issue Date: | 1-May-2011 | Source: | Journal of Membrane Science, 2011, vol. 373, no. 1-2, pp. 53-63 | Volume: | 373 | Issue: | 1-2 | Start page: | 53 | End page: | 63 | Journal: | Journal of Membrane Science | Abstract: | The scope of the current study is to investigate the ultrafiltration process of high molecular weight β-glucan molecules with a final purpose to optimize their recovery from oat mill waste. Therefore, standard β-glucan solutions were processed in a dead-end cell using three types of membranes (regenerated cellulose, polyethersulfone and polysulfone) under several transmembrane pressures. Optimization was conducted by monitoring performance parameters and retention coefficients for each experimental combination. In terms of membrane type, polysulfone was selected as the most appropriate membrane material since it obtained satisfactory retention coefficient and performance parameter values when the β-glucan concentration was less than 600. mg/L. Thereafter, the polysulfone membrane was applied in a pilot cross-flow module instead of a dead-end cell. The retention of β-glucan as well as the flux recovery was markedly improved with no important reduction of the permeate flux. Finally, polysulfone membrane was applied in the pilot cross-flow module for the ultrafiltration of β-glucan containing feeds (<600. mg/L) recovered from the industrial oat mill waste. Results indicated that the optimized ultrafiltration process (polysulfone in cross-flow module, with transmembrane pressure ≤2. bar and β-glucan concentrations < 600. mg/L) could be utilized in order to recover β-glucan from the oat mill waste feeds and clarify them from smaller organic and inorganic compounds. A disadvantage of the latter application was the small degree of separation between β-glucan and proteins | URI: | https://hdl.handle.net/20.500.14279/3165 | ISSN: | 03767388 | DOI: | 10.1016/j.memsci.2011.02.032 | Rights: | © Elsevier | Type: | Article | Affiliation : | Technical University of Crete Chemical Analytical Laboratories “Galanakis” Cyprus University of Technology |
Publication Type: | Peer Reviewed |
Appears in Collections: | Άρθρα/Articles |
CORE Recommender
SCOPUSTM
Citations
106
checked on Nov 9, 2023
WEB OF SCIENCETM
Citations
50
65
Last Week
1
1
Last month
1
1
checked on Oct 29, 2023
Page view(s)
455
Last Week
0
0
Last month
0
0
checked on Nov 6, 2024
Google ScholarTM
Check
Altmetric
Items in KTISIS are protected by copyright, with all rights reserved, unless otherwise indicated.