Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/31029
Τίτλος: Machine Learning and transcritical sprays: A demonstration study of their potential in ECN Spray-A
Συγγραφείς: Koukouvinis, Foivos (Phoevos) 
Rodriguez, Carlos 
Hwang, Joonsik 
Karathanassis, Ioannis K. 
Gavaises, Manolis 
Pickett, Lyle M. 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: Artificial Neural Network;Fuel injection;Machine Learning;multiphase flows;real-fluid thermodynamics;regression;transcritical mixing
Ημερομηνία Έκδοσης: 1-Σεπ-2022
Πηγή: International Journal of Engine Research, 2022, vol. 23, iss. 9, pp. 1556 - 1572
Volume: 23
Issue: 9
Start page: 1556
End page: 1572
Περιοδικό: International Journal of Engine Research 
Περίληψη: The present work investigates the application of Machine Learning and Artificial Neural Networks for tackling the complex issue of transcritical sprays, which are relevant to modern compression-ignition engines. Such conditions imply the departure of the classical thermodynamic perspective of ideal gas or incompressible liquid, necessitating the use of costly and elaborate thermodynamic closures to describe property variation and simulation methods. Machine Learning can assist in several ways in speeding up such calculations, either as a compact, trained thermodynamic model that can be coupled to the flow solver, or as a surrogate predictive tool of spray characteristics. In this work, such applications are demonstrated and their performance is assessed against more traditional approaches. Such applications involve the prediction of macroscopic spray characteristics, for example, the spray penetration over time, or the spray distribution in space and time, and predictions of fluid properties for the thermodynamic states encountered in such applications. Macroscopic characteristics can be adequately predicted by relatively simple network structures, involving just a hidden layer of 3–4 neurons, whereas prediction of thermodynamic states requires several layers of 5–20 neurons each. The results of integrating Artificial Neural Networks in transcritical sprays are rather promising; prediction of thermodynamic properties at pressures greater than 1bar has effectively zero error, yielding simulations indistinguishable from standard tabulated approaches with minimal overhead. When used as a regression method for time-histories either of spray characteristics or spray distributions, the results are within experimental uncertainty of similar experiments, not included in the training dataset. (Figure presented.).
URI: https://hdl.handle.net/20.500.14279/31029
ISSN: 14680874
DOI: 10.1177/14680874211020292
Rights: © IMechE
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: University of London 
Mississippi State University 
Sandia National Laboratories 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

12
checked on 14 Μαρ 2024

Page view(s) 50

74
Last Week
1
Last month
14
checked on 31 Αυγ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons