Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/31029
Πεδίο DCΤιμήΓλώσσα
dc.contributor.authorKoukouvinis, Foivos (Phoevos)-
dc.contributor.authorRodriguez, Carlos-
dc.contributor.authorHwang, Joonsik-
dc.contributor.authorKarathanassis, Ioannis K.-
dc.contributor.authorGavaises, Manolis-
dc.contributor.authorPickett, Lyle M.-
dc.date.accessioned2024-01-29T09:58:36Z-
dc.date.available2024-01-29T09:58:36Z-
dc.date.issued2022-09-01-
dc.identifier.citationInternational Journal of Engine Research, 2022, vol. 23, iss. 9, pp. 1556 - 1572en_US
dc.identifier.issn14680874-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/31029-
dc.description.abstractThe present work investigates the application of Machine Learning and Artificial Neural Networks for tackling the complex issue of transcritical sprays, which are relevant to modern compression-ignition engines. Such conditions imply the departure of the classical thermodynamic perspective of ideal gas or incompressible liquid, necessitating the use of costly and elaborate thermodynamic closures to describe property variation and simulation methods. Machine Learning can assist in several ways in speeding up such calculations, either as a compact, trained thermodynamic model that can be coupled to the flow solver, or as a surrogate predictive tool of spray characteristics. In this work, such applications are demonstrated and their performance is assessed against more traditional approaches. Such applications involve the prediction of macroscopic spray characteristics, for example, the spray penetration over time, or the spray distribution in space and time, and predictions of fluid properties for the thermodynamic states encountered in such applications. Macroscopic characteristics can be adequately predicted by relatively simple network structures, involving just a hidden layer of 3–4 neurons, whereas prediction of thermodynamic states requires several layers of 5–20 neurons each. The results of integrating Artificial Neural Networks in transcritical sprays are rather promising; prediction of thermodynamic properties at pressures greater than 1bar has effectively zero error, yielding simulations indistinguishable from standard tabulated approaches with minimal overhead. When used as a regression method for time-histories either of spray characteristics or spray distributions, the results are within experimental uncertainty of similar experiments, not included in the training dataset. (Figure presented.).en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Engine Researchen_US
dc.rights© IMechEen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectArtificial Neural Networken_US
dc.subjectFuel injectionen_US
dc.subjectMachine Learningen_US
dc.subjectmultiphase flowsen_US
dc.subjectreal-fluid thermodynamicsen_US
dc.subjectregressionen_US
dc.subjecttranscritical mixingen_US
dc.titleMachine Learning and transcritical sprays: A demonstration study of their potential in ECN Spray-Aen_US
dc.typeArticleen_US
dc.collaborationUniversity of Londonen_US
dc.collaborationMississippi State Universityen_US
dc.collaborationSandia National Laboratoriesen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.journalsSubscriptionen_US
dc.countryUnited Kingdomen_US
dc.countryUnited Statesen_US
dc.subject.fieldNatural Sciencesen_US
dc.publicationPeer Revieweden_US
dc.identifier.doi10.1177/14680874211020292en_US
dc.identifier.scopus2-s2.0-85106662456-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85106662456-
dc.relation.issue9en_US
dc.relation.volume23en_US
cut.common.academicyear2022-2023en_US
dc.identifier.spage1556en_US
dc.identifier.epage1572en_US
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypearticle-
item.languageiso639-1en-
crisitem.author.deptDepartment of Mechanical Engineering and Materials Science and Engineering-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0002-3945-3707-
crisitem.author.parentorgFaculty of Engineering and Technology-
Εμφανίζεται στις συλλογές:Άρθρα/Articles
CORE Recommender
Δείξε τη σύντομη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 50

12
checked on 14 Μαρ 2024

Page view(s) 50

49
Last Week
0
Last month
6
checked on 18 Μαϊ 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons