Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30946
Τίτλος: A Data Lake Metadata Enrichment Mechanism via Semantic Blueprints
Συγγραφείς: Pingos, Michalis 
Andreou, Andreas S. 
Major Field of Science: Natural Sciences
Field Category: Computer and Information Sciences
Λέξεις-κλειδιά: 5Vs Big Data Characteristics;Data Blueprints;Data Lakes;Deep Insight;Heterogeneous Data Sources;Metadata Mechanism;Smart Data Processing
Ημερομηνία Έκδοσης: 25-Απρ-2022
Πηγή: 17th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2022, Virtual, Online, 25 - 26 April 2022
Conference: International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE - Proceedings 
Περίληψη: One of the greatest challenges in Smart Big Data Processing nowadays revolves around handling multiple heterogeneous data sources that produce massive amounts of structured, semi-structured and unstructured data through Data Lakes. The latter requires a disciplined approach to collect, store and retrieve/analyse data to enable efficient predictive and prescriptive modelling, as well as the development of other advanced analytics applications on top of it. The present paper addresses this highly complex problem and proposes a novel standardization framework that combines mainly the 5Vs Big Data characteristics, blueprint ontologies and Data Lakes with ponds architecture, to offer a metadata semantic enrichment mechanism that enables fast storing to and efficient retrieval from a Data Lake. The proposed mechanism is compared qualitatively against existing metadata systems using a set of functional characteristics or properties, with the results indicating that it is indeed a promising approach.
URI: https://hdl.handle.net/20.500.14279/30946
ISBN: 9789897585685
DOI: 10.5220/0011080400003176
Rights: © by SCITEPRESS – Science and Technology Publications, Lda
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Conference Papers
Affiliation: Cyprus University of Technology 
Εμφανίζεται στις συλλογές:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation

CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

SCOPUSTM   
Citations 20

3
checked on 14 Μαρ 2024

Page view(s) 20

134
Last Week
3
Last month
4
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons