Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14279/30946
DC FieldValueLanguage
dc.contributor.authorPingos, Michalis-
dc.contributor.authorAndreou, Andreas S.-
dc.date.accessioned2023-12-18T10:39:06Z-
dc.date.available2023-12-18T10:39:06Z-
dc.date.issued2022-04-25-
dc.identifier.citation17th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2022, Virtual, Online, 25 - 26 April 2022en_US
dc.identifier.isbn9789897585685-
dc.identifier.urihttps://hdl.handle.net/20.500.14279/30946-
dc.description.abstractOne of the greatest challenges in Smart Big Data Processing nowadays revolves around handling multiple heterogeneous data sources that produce massive amounts of structured, semi-structured and unstructured data through Data Lakes. The latter requires a disciplined approach to collect, store and retrieve/analyse data to enable efficient predictive and prescriptive modelling, as well as the development of other advanced analytics applications on top of it. The present paper addresses this highly complex problem and proposes a novel standardization framework that combines mainly the 5Vs Big Data characteristics, blueprint ontologies and Data Lakes with ponds architecture, to offer a metadata semantic enrichment mechanism that enables fast storing to and efficient retrieval from a Data Lake. The proposed mechanism is compared qualitatively against existing metadata systems using a set of functional characteristics or properties, with the results indicating that it is indeed a promising approach.en_US
dc.language.isoenen_US
dc.rights© by SCITEPRESS – Science and Technology Publications, Ldaen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject5Vs Big Data Characteristicsen_US
dc.subjectData Blueprintsen_US
dc.subjectData Lakesen_US
dc.subjectDeep Insighten_US
dc.subjectHeterogeneous Data Sourcesen_US
dc.subjectMetadata Mechanismen_US
dc.subjectSmart Data Processingen_US
dc.titleA Data Lake Metadata Enrichment Mechanism via Semantic Blueprintsen_US
dc.typeConference Papersen_US
dc.collaborationCyprus University of Technologyen_US
dc.subject.categoryComputer and Information Sciencesen_US
dc.countryCyprusen_US
dc.subject.fieldNatural Sciencesen_US
dc.relation.conferenceInternational Conference on Evaluation of Novel Approaches to Software Engineering, ENASE - Proceedingsen_US
dc.identifier.doi10.5220/0011080400003176en_US
dc.identifier.scopus2-s2.0-85140988754-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85140988754-
cut.common.academicyear2021-2022en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_c94f-
item.openairetypeconferenceObject-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.deptDepartment of Electrical Engineering, Computer Engineering and Informatics-
crisitem.author.facultyFaculty of Engineering and Technology-
crisitem.author.orcid0000-0001-7104-2097-
crisitem.author.parentorgFaculty of Engineering and Technology-
Appears in Collections:Δημοσιεύσεις σε συνέδρια /Conference papers or poster or presentation
CORE Recommender
Show simple item record

SCOPUSTM   
Citations 20

3
checked on Mar 14, 2024

Page view(s) 20

134
Last Week
3
Last month
4
checked on Nov 21, 2024

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons