Παρακαλώ χρησιμοποιήστε αυτό το αναγνωριστικό για να παραπέμψετε ή να δημιουργήσετε σύνδεσμο προς αυτό το τεκμήριο: https://hdl.handle.net/20.500.14279/30941
Τίτλος: Variational Bayes to Accelerate the Lagrange Multipliers towards the Dual Optimization of Reliability and Cost in Renewable Energy Systems
Συγγραφείς: Nikolaidis, Pavlos 
Major Field of Science: Engineering and Technology
Field Category: Electrical Engineering - Electronic Engineering - Information Engineering
Λέξεις-κλειδιά: global optimization;Lagrange relaxation;machine learning;renewable energy;unit commitment;variational Bayes
Ημερομηνία Έκδοσης: 1-Ιαν-2023
Πηγή: Algorithms, vol. 16, iss. 1
Volume: 16
Issue: 1
Περιοδικό: Algorithms 
Περίληψη: Renewable energy sources are constantly increasing in the modern power systems. Due to their intermittent and uncertain potential, increased spinning reserve requirements are needed to conserve the reliability. On the other hand, each action towards efficiency improvement and cost reduction contradicts the participation of variable resources in the energy mix, requiring more accurate tools for optimal unit commitment. By increasing the renewable contribution, not only does the overall system inertia decrease with the decreasing conventional generation, but more generators that are expensive are also introduced. This work provides a radically different approach towards a tractable optimization task based on the framework of Lagrange relaxation and variational Bayes. Following a dual formulation of reliability and cost, the Lagrange multipliers are accelerated via a machine learning mechanism, namely, variational Bayesian inference. The novelty in the proposed approach stems from the employed acquisition function and the effect of the Gaussian process. The obtained results show great improvements compared with the Lagrange relaxation alternative, which can reach over USD 1 M in production cost credits at the least number of function evaluations. The proposed hybrid method promises global solutions relying on a proper acquisition function that is able to move towards regions with minimum objective value and maximum uncertainty.
URI: https://hdl.handle.net/20.500.14279/30941
ISSN: 19994893
DOI: 10.3390/a16010020
Rights: © by the author
Attribution-NonCommercial-NoDerivatives 4.0 International
Type: Article
Affiliation: Cyprus University of Technology 
Publication Type: Peer Reviewed
Εμφανίζεται στις συλλογές:Άρθρα/Articles

Αρχεία σε αυτό το τεκμήριο:
Αρχείο Περιγραφή ΜέγεθοςΜορφότυπος
algorithms-16-00020.pdfFull text4.15 MBAdobe PDFΔείτε/ Ανοίξτε
CORE Recommender
Δείξε την πλήρη περιγραφή του τεκμηρίου

Page view(s)

130
Last Week
0
Last month
10
checked on 21 Νοε 2024

Download(s)

68
checked on 21 Νοε 2024

Google ScholarTM

Check

Altmetric


Αυτό το τεκμήριο προστατεύεται από άδεια Άδεια Creative Commons Creative Commons