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Abstract: Renewable energy sources are constantly increasing in the modern power systems. Due
to their intermittent and uncertain potential, increased spinning reserve requirements are needed
to conserve the reliability. On the other hand, each action towards efficiency improvement and
cost reduction contradicts the participation of variable resources in the energy mix, requiring more
accurate tools for optimal unit commitment. By increasing the renewable contribution, not only does
the overall system inertia decrease with the decreasing conventional generation, but more generators
that are expensive are also introduced. This work provides a radically different approach towards a
tractable optimization task based on the framework of Lagrange relaxation and variational Bayes.
Following a dual formulation of reliability and cost, the Lagrange multipliers are accelerated via a
machine learning mechanism, namely, variational Bayesian inference. The novelty in the proposed
approach stems from the employed acquisition function and the effect of the Gaussian process. The
obtained results show great improvements compared with the Lagrange relaxation alternative, which
can reach over USD 1 M in production cost credits at the least number of function evaluations. The
proposed hybrid method promises global solutions relying on a proper acquisition function that is
able to move towards regions with minimum objective value and maximum uncertainty.

Keywords: renewable energy; global optimization; variational Bayes; machine learning; unit
commitment; Lagrange relaxation

1. Introduction

Under the consequences of one of the biggest energy crises, all countries around the
globe are exploring viable solutions for alternatives to fossil fuels and especially natural
gas. In the light of polluting emissions and climate change, the necessity of renewable
energy sources (RES) grew exponentially during the last two years, under the shadow of a
war that is still plaguing European countries and states around the world. Apart from the
public concerns relating to the upcoming living conditions, a huge uncertainty has been
added to the price of essential products that are either directly or indirectly affected by the
dependency on imported natural gas [1].

As more stakeholders seek greater clarity and confidence in long-term investments
and their respective opportunities in the forthcoming years, the impact of a potential
integration of renewable and storage systems needs to be evaluated. To mitigate the
environmental concerns around fossil fuels exploitation, the benefit list of a transition
towards sectors electrification, de-carbonization and sustainability must be strengthened,
facilitated by efficient tools that are able to consolidate the real-world constraints. Recent
research activities on renewable sources and storage have been concentrated successfully
on single operations and objectives. New objectives have recently appeared, targeting
the co-optimization of cost, emissions, security and reliability within the power systems.
These targets can be examined in depth, considering resources hybridization, multi-sectoral
energy satisfaction and smart grid consolidation. As the missing link between intermittent
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renewable power and constant reliability, the various energy storage technologies can be
compared, accounting for microgrid and virtual power plant formations.

The current state of research carefully reviews and assesses various approaches in
optimal unit commitment (UC), which forms one of the most important tasks of the modern
electric industry. Empirical methods simply consider the satisfaction of load by adjusting
electricity production to demand during normal conditions [2,3]. In the case of generation
deficits, load shedding takes place, while during excess generation, the electricity from RES
is curtailed. More evolutionary methods aim at the co-optimization of load shedding and
RES curtailment, following a priority with respect to generating the incremental cost of the
participating units [4]. In this direction, priority-list schemes [5], Benders decomposition [6],
Branch-and-Bound [7] and Lagrange relaxation (LR) [8] are some representative techniques
that are able to offer only near-optimal solutions. Their relevant advantages rely on the
mathematical process, which facilitates both the traceable transitions towards the final
recommendation and the computational complexity irrespective of the number of examined
generators. On the other hand, the obtained duality gap cannot be eliminated due to the
imposed, real-world constraints that plague the generation activity today. These refer to
the complicating constraints of power balance and spinning reserve in order to deal with
the intermittent and stochastic behaviour of RES [9].

To offer adaptive mechanisms that are able to satisfy the required ramping capability,
unit capacity and operating times, a heuristic search has been proposed in several research
works. These approaches rely on physical- or biological-based algorithms and involve
genetic algorithms [10], particle swarm optimization [11], simulated annealing [12], ant
colony [13], tabu search [14] and so on. Although flexible, these techniques cannot guar-
antee optimality, especially in large systems where the magnitude of their sub-optimality
cannot be evaluated [15]. As a result, the most recent version of UC solvers includes
meta-heuristic alternatives. Binary grey wolf [16], binary whale [17], binary successive
civilized swarm optimization [18], binary fish migration [19], binary cuckoo search [20],
binary differential evolution [21], binary moth flame [22], coyote [23], binary [24] and
artificial bee colony [25], monarch butterfly [26] and sine-cosine variant [27] are only some
of the optimization approaches that exploit the merits derived from mathematical and
heuristic methods to hybridize the process with one critical goal—to provide optimal
exploration–exploitation trade-offs. This way, the last category aims at providing near-
optimal solutions to the UC, consolidating several complicating equality and inequality
constraints, conditional limitations and space boundaries while examining a large number
of participating generating units over different time horizons. However, together with
heuristics, meta-heuristic methods involve randomness and use the stochastic (or fuzzy)
approach in moving from one solution to another [28].

To ameliorate for the demerits arising from the aforementioned approaches involved in
emerging UC proposals, this work exploits the most recent advancements of the Lagrange
framework and Bayesian inference to develop a radically new optimization tool for optimal
UC schedules. Using the duality gap theory to form a Lagrangian objective, the problem is
repeatedly minimized by updating the Lagrange multipliers based on Bayesian optimiza-
tion. The multipliers account for both the security (power balance) and reliability (spinning
reserve). The proposed approach essentially improves the computational performance via
the dual optimization of reliability and cost in systems with highly variable resources. In
addition, it offers global explorations in a minimum number of function evaluations, ensur-
ing the transparency between the recommended solutions. The innovation in the proposed
approach stems from the employed acquisition function and the effect of the Gaussian
process. In this way, the expected improvement function properly guides optimization
towards regions with either a minimum, mean or maximum uncertainty.

The rest of the paper is organized as follows. In Section 2, the dual formulation
of the problem is presented, along with the complicating and unit-specific constraints.
Section 3 deals with the mathematical formulation of Lagrange relaxation and variational
Bayes as the primer for Lagrange-multipliers acceleration towards rapid convergence. The
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experimental evaluation is included in Section 4, where the obtained results are discussed
in detail. Finally, the conclusions are drawn in Section 5.

2. Dual Problem Formulation

In its most analytical form, the objective of the unit commitment task is formulated to
minimize the total generation cost (TGC), considering three main expenses. First, the fuel
consumption cost F(S, P) is estimated based on the dynamic state (St

i ) and actual power
output (Pt

i ) of each committed generator i during the time interval t. This expenditure
relies on the cost coefficients of each independent generator, which in turn accounts for the
heat rate coefficients (ai, bi, ci) and fuel specific cost fc. The following quadratic equation is
generally used to define these expenses.

F
(
St

i , Pt
i
)
= St

i

{
fc

[
ai
(

Pt
i
)2

+ biPt
i + ci

]}
(1)

The second aspect regards the emission cost E(S, P) that evaluates the gaseous emis-
sions from different pollutants, including carbon dioxide (CO2), carbon oxide (CO), nitrogen
oxides (NOx), sulfur oxides (SOx) and other hydrocarbon byproducts (CxHy). Assuming
the emission cost coefficients (ei1, ei2, ei3) of each generator, the following equation can be
utilized to account for this expenditure [29].

E
(
St

i , Pt
i
)
= St

i

[
ei1
(

Pt
i
)2

+ ei2Pt
i + ei3

]
(2)

The last portion of costs refers to the penalties (Πt of Equation (3)) and deteriorates
reliability. This relates the energy not-served (PENS), translated as load shedding, the
spinning reserve not-served (PSRNS) and the curtailed power from RES (Pcut-RES) with their
respective penalty costs of πE, πSR and πRES [4].

Πt = πEPt
ENS + πSRPt

SRNS + πRESPt
cut−RES (3)

Finally, a factor is added to both unit-specific costs to include the start-up cost with
respect to fuel consumption (FSUi) and associated emissions (ESUi). The comprehensive
objective can now be represented with the aid of Equation (4), considering a time horizon T
and participating generators N.

TGC =
T

∑
t=1

{
N

∑
i=1

[
F
(
St

i , Pt
i
)
+ E

(
St

i , Pt
i
)
+ St

i (FSUi + ESUi)St−1
i

]
+ Πt

}
(4)

The complicating constraints of the UC objective give priority to every action towards
emissions inclination, efficiency improvement and RES integration. To this end, the power
equilibrium expresses the equality constraints such that:

N

∑
i=1

St
i Pt

i = Pt
net , ∀t ∈ T (5)

Pt
net = Pt

load − Pt
VRES (6)

Pt
VRES = Pt

PV + Pt
wind + Pt

biomass + Pt
water + Pt

geo + Pt
CHP + Pt

FC (7)

While the net load (Pt
net) equals the residual demand after the variable RES (Pt

VRES)
involvement, the contribution of solar PVs (Pt

PV), wind (Pt
wind), biomass (Pt

biomass), hydro
and water alternatives such as wave and tidal (Pt

water), geothermal (Pt
geo), combined heat and

power (Pt
CHP) and fuel cells using renewable fuels (Pt

FC) for electricity demand satisfaction



Algorithms 2023, 16, 20 4 of 15

requires increased spinning reserves (SRt) to conserve the system’s reliability. These
requirements are represented by the following inequality constraint:

N

∑
i=1

St
i RUt

i ≥ SRt , ∀t ∈ T (8)

To adequately respond to probable, sudden deviations between actual and forecasted
values, for both the demand and VRES contribution, the ramp-up capability (RUt

i ) from all
committed generators during the interval t must satisfy the following requirements [30]:

SRt = ξloadPt
load + ξVRESPt

VRES (9)

In order to account for the unit-specific and plant-wide constraints, the limitations of
power capacity, ramping capability, minimum state-change periods and compulsory status
are taken into consideration. The power-output boundaries for each generator are shown
in Equation (10). The positive (RUi) and negative (RDi) rate of change of the power output
are presented with Equations (11) and (12). Equations (13) and (14) are used to calculate
the minimum time (MUi) that must be elapsed before a generating unit can switch from
on-status to off-status ( St

i = 1→ 0) and vice versa (MDi). The unavailability of a generator
due to an unintentional failure or intentional maintenance is translated as a “must out”
value. On the contrary, based on security and stability issues, at least one unit has to
operate in “must run” within each independent power plant. Combined cycle units possess
an exception and interchange between these states according to their mode of operation.
Consequently, each mode is expressed via a different quadratic function, the state of which
becomes “on” only when called upon [31].

Pi,min ≤ Pt
i ≤ Pi,max , ∀t ∈ T (10)

Pt
i − Pt−1

i ≤ RUi , ∀t ∈ T (11)

Pt−1
i − Pt

i ≤ RDi , ∀t ∈ T (12)

t

∑
t=ton

St
i ≥ MUi , ∀t ∈ T (13)

t

∑
t=to f f

(
1− St

i
)
≥ MDi , ∀t ∈ T (14)

St
i =

{
0 , i f i = must out
1 , i f i = must run

, ∀t ∈ T (15)

The plant-wide restriction (cp) regards the maximum number of actions that can
simultaneously be performed within a power plant. It is reflected by the maximum number
of system operators and/or the capability of the integrated auxiliary equipment. The
so-called crew constraint is formulated as:

cp =
Np

∑
i=1

St
i

(
1− St−1

i

)
, ∀t ∈ T (16)

where Np is the number of generating units within the power plant p.

3. Mathematical Framework

In this section, the mathematical framework relating to the algorithm developed for
global optimization is presented and explained in detail. The objective function is expressed
as Lagrangian, and the UC problem is decomposed into sub-problems that are coupled
by making use of Lagrangian multipliers. In this way, the constrained optimum can be



Algorithms 2023, 16, 20 5 of 15

obtained through the dual optimization of reliability and cost, which can manifest as
spinning reserve satisfaction and power balance.

3.1. Lagrange Relaxation Approach

The Lagrangian function can be written with respect to the non-negative multipliers
of λt and µt as:

L = F
(
St

i , Pt
i
)
+

T

∑
t=1

λt

(
Pt

net −
N

∑
i=1

St
i Pt

i

)
+

T

∑
t=1

µt

[
Pt

net + SRt −
N

∑
i=1

St
i
(

Pt
i + RUi

)]
(17)

To separately minimize the contribution of each generating unit, Equation (17) is
rewritten in the following form:

L =
N

∑
i=1

T

∑
t=1

{
St

i

[
F
(
St

i , Pt
i
)
+
(

1− St−1
i

)
FSUi

]
− λtSt

i Pt
i − µtSt

i Pt
i

}
+

T

∑
t=1

[
λtPt

net + µt(Pt
net + SRt)] (18)

At this stage, the complicating constraints can temporarily be ignored, and the first
term of the expression can be minimized based on the problem:

min
St

i ,P
t
i

.
L =

N

∑
i=1

min
T

∑
t=1

{
St

i

[
F
(
St

i , Pt
i
)
+
(

1− St−1
i

)
FSUi

]
− λtSt

i Pt
i − µtSt

i Pt
i

}
(19)

This is subject to the constraints (10)–(15). By eliminating the coupling constraints,
a guaranteed solution is expected if the constrained optimization task forms a relaxed
problem that offers a lower bound to the original problem [32]. In the Lagrange relaxation
method, the separability of the constraints is the underlying assumption that allows for the
violation penalization towards optimality. Denoting with sk the mismatches of the coupling
constraints at iteration k, the vector of Lagrange multipliers is updated considering the
sub-gradient method as follows [9]:

[
λk+1 µk+1

]
=
[
λk µk

]
+ ak sk

||sk||
(20)

ak =
1

α + βk
(21)

The terminating criterion is called a duality gap (ε) and shows the difference percentage
between the primal (J) and the dual (q) problem, respectively, according to Equation (22).

ε =
J − q
|J| ≤ error (22)

The repeating procedure stops when ε becomes lower than either a pre-specified toler-
ance (error) or a maximum number of defined iterations. Although the sub-gradient method
is simple and computationally non-intensive, the oscillating behavior makes it difficult
to design an appropriate stopping criterion. Typical solutions propose different step-size
values for the over-constrained and under-constrained conditions at the expense of the
exploration-space decrease and convergence time. In addition, unlike linear programming,
integer linear programming cannot provide a strong duality theory. In this way, the optimal
value of the dual Langrangian problem does not have to be the same as the optimal value
of the original (primal) problem, which implies that the magnitude of the sub-optimality is
controversial [33].

3.2. Bayesian Primer

To overcome the drawbacks of the weak duality and the oscillatory behavior of La-
grange relaxation, the Lagrange multipliers are modeled to form a Gaussian process.
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This constitutes a stochastic process that governs the properties of functions rather than
describing random variables, which are scalars or vectors. Consequently, the new popu-
lation is produced by adding the Gaussian number N

(
0, σ2) with a mean of zero and a

pre-determined standard deviation to each multiplier such that:

λk+1 = λk +N
(

0, σ2
)

(23)

µk+1 = µk +N
(

0, σ2
)

(24)

This allows for giving a prior probability to every feasible function, with higher
probabilities being given to functions that are more likely to be seen. Then, Bayesian
inference techniques can be used in order to make progressive observations towards
the final solution. In this realization, X represents the pairs of binary states St

i and the
continuous output Pt

i , whereas Y is the scalar objective value of cost [34]. According to
Bayes’ theorem, the updated posterior p(f|Y,X) is given considering an observed likelihood
p(Y|f), the prior p(f|X) and the marginal likelihood p(Y|X), which will optimize the kernels
and normalize the posterior such that:

p( f |Y, X) =
p( f |X)p(Y| f )

p(Y|X)
(25)

Any set of the correlated, real values of independent and identically distributed random
variables X and the postulated prior imposed over f (x) is expressed as p( f |X) ∼ N (0, K),
where K represents the kernel, covariance matrix [35]. In this work, variational Bayes
is taken into account due to its notably better scalability related to computational costs,
which is of vital importance when having to deal with large datasets. Assuming D to
be the set of the model parameters over which a prior distribution has been imposed,
and considering Ξ|xi as the set of all model-hyperparameter priors and kernel functions,
variational Bayesian inference provides a distribution q(D) in order to approximate the
actual posterior p(D|Ξ,X,Y), which is computationally intractable, yielding:

log p(X, Y) = L(q) + KL(q|p) (26)

L(q) =
∫

dDq(D) log
p(X, Y, D|Ξ)

q(D)
(27)

where KL(q|p) represents the Kullback–Leibler divergence between the actual posterior
p(D|Ξ,X,Y) and the approximate variational posterior, q(D). Since KL divergence is non-
negative, L(q) forms a strict lower bound of the log evidence and would become exact if
q(D) = p(D|Ξ,X,Y). Therefore, by maximizing this lower bound L(q) such that it becomes
as tight as possible, not only can the KL-divergence be minimized between the true and the
variational posterior, but the unknown D can also implicitly be integrated out [36].

4. Experimental Evaluation

The experimental evaluation was performed considering a power system consisting
of 18 generating units, the thermal characteristics of which are listed in Table 1.

The hourly, net demand (load minus RES) for a representative week (5 weekdays) in
summer is presented in Figure 1.

The simulations were realized with the aid of MATLAB (MATLAB R2020, MathWorks)
on a computer with an Intel-Core i7-4510U CPU @2.6 GHz, a 64-bit operating system (Win-
dows 10) and 6 GB of memory. Utilizing the program developed based on the Lagrange
relaxation approach, the parameters considered regard 120 hourly intervals, a 3500 MW
peak load, a 5% spinning reserve requirement, 0.01 and 0.002 for the α and β update coeffi-
cients, respectively, a 0.01 gap error, a 10−9 tolerance for power balance and a maximum
number of iterations of 350.
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Table 1. Characteristics of the thermal generating units.

Unit i a ($/MW2h) b ($/MWh) c ($/h) SU ($) Pmin
(MW)

Pmax
(MW) MU (h) MD (h) RU

(MW/h)
RD

(MW/h)

1 0.001 4 5 10,000 100 800 8 8 350 350
2 0.002 6 5 10,000 100 800 8 8 350 350
3 0.0025 8 20 8000 80 400 4 4 160 160
4 0.0025 10 20 8000 80 400 4 4 160 160
5 0.002 10 30 6000 60 300 3 3 120 120
6 0.002 12 30 6000 60 300 3 3 120 120
7 0.0015 14 40 5000 50 200 2 2 75 75
8 0.0015 16 40 5000 50 200 2 2 75 75
9 0.0012 15 55 2500 25 100 1 1 40 40
10 0.0012 17 55 2500 25 100 1 1 40 40
11 0.0012 17 55 2500 25 100 1 1 40 40
12 0.002 10 30 6000 60 300 3 3 120 120
13 0.002 12 30 6000 60 300 3 3 120 120
14 0.0015 14 40 5000 50 200 2 2 75 75
15 0.0015 16 40 5000 50 200 2 2 75 75
16 0.0012 15 55 2500 25 100 1 1 50 50
17 0.0012 17 55 2500 25 100 1 1 50 50
18 0.0012 17 55 2500 25 100 1 1 50 50
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4.1. Comparison with Conventional Methods

Penalizing the curtailed RES, the energy not-served and the spinning reserve deficits
with the most expensive production cost (using Equation (28)), the oscillating performance
of the conventional LR approach can be observed in Figure 2.

πt = max
i
{F(Pi,max)} (28)

This corresponds to a TPC of 861.36 k$, obtained based on the following UC
schedule (Figure 3).

Similar results were obtained by implementing simulations for the rest of the four
weekdays. The performance is depicted in Table 2, where the number of iterations, the dual
gap and the total production cost are included.
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Figure 3. Optimal UC schedule via the LR approach pertaining to the first 24 h residual demand.

Table 2. Results obtained through the conventional LR.

Assessed Weekday Max (k) ε J (k$)

1 101 0.003 783.89
2 93 0.008 625.66
3 97 0.008 604.86
4 123 0.007 636.45
5 161 0.007 861.36

4.2. Comparison with Modern Insights

In this section, the most recent advances in the field of gradient-based optimization
(GBO) and genetic algorithms are presented in order to evaluate and compare them with
the proposed solution. Based on simulations obtained by applying the gradient-based
optimization of [15], the TPC pertaining to the five-day optimal UC is rated at 2355.145 k$.
The high production cost is formed by the increased number of committed generating units
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responding to the rapid changes in net load. Figure 4 justifies the obtained TPC, presenting
the respective UC and power dispatch on the participating generating units.
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With respect to genetic algorithms, the available function GA in the MATLAB op-
timization toolbox was taken into account, considering two coupling constraints and
mixed-integer limitations. The drawback of the developed algorithm lies in the increased
number of function evaluations (showing an exponential increase compared with LR) and
the violation of coupling constraints. As a result, a penalty cost for the PENS and PSRNS

retrieved as
ˆ
a = max ai,

ˆ
b = max bi,

ˆ
c = max ci was considered, resulting in a final TPC of

2378.296 k$. The power deficits can be seen in Figure 5.
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optimization move toward regions with lower mean values (lowest cost) and maximum
uncertainty (posterior variance) [37]. In this way, the procedure not only avoids trapping at
local oscillations but also promises a guaranteed global solution, increasing the exploration
space with the minimum number of function evaluations. In normalized values, the
performance of the proposed approach during a certain time interval can be explained
with the help of Figure 6. Figure 6a shows the estimated objective function across the
Lagrange multipliers. The respective minimum TPC over the required function evaluations
(iterations) is illustrated in Figure 6b. Assuming that the formulated coupling constraint
of power balance is satisfied only when

(
∑ St

i Pt
i − Pt

net − 10−9) ≤ 0, its actual violation
degree during an optimization loop can be expressed by Figure 7.
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Applying simulations pertaining to the five weekdays, the optimal UC schedule
greatly improved. Figure 8 presents the obtained contribution of the least committed units.
The cumulative TPC achieved a drastic decrease in the order of −1.254 M$ (or a final of
2258.349 k$). The start-up cost, along with the fuel cost during each hourly interval, can be
seen in Figure 9.
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Figure 9. Start-up versus total production cost with the variational Bayes paradigm.

For the realization of the model developed based on variational Bayes, the settings utilized
for control, initialization and stopping were the expected improvement acquisition function,
50% exploration ratio, 300-point Gaussian process fitness, four initial evaluation points, two
non-deterministic coupling constraints and 30 maximum function evaluations without any
initialization values for the optimizable variables, constraint violations or objective.
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4.3. Prospects for Real-World Conditions

In real-world implementations, the RES contribution possesses the priority in the
energy mix. Consequently, the penalty costs for the power not served from variable
resources become superior in order to eliminate their curtailment. By enhancing the
variable and uncertain resource penetration, the overall system inertia in terms of spinning
reserve decreases, since the conventional generating units constitute the only source for the
spinning reserve provision. An actual paradigm representing the residual load in contrast
to the variable energy sources integration is depicted in Figure 10.
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The actual values of the considered energy system pertaining to the worst day are
tabulated in Table 3, along with the dynamic, spinning reserve requirement.

Table 3. MW-output of different renewable systems across the residual load.

Interval Biomass Geothermal PV Wind Hydro Residual Load SR

1 10 18 0 23 305 1458 45
2 10 18 0 2 296 1436 37
3 10 17 0 0 287 1395 35
4 10 17 0 0 283 1374 34
5 10 17 0 12 287 1384 39
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The sharp changes in the net load observed during periods with a high RES contribu-
tion require rapid-response generators to get online and follow the curve with minimum
deviations. Apart from the increased ramping capability, these generators are usually
expensive to start up, and in power systems with frequent renewable intermittency (e.g.,
due to unexpected cloud occurrences or steep wind gusts or falls), they may start up/shut
down multiple times a day. On the contrary, the fuels used by rapid units with a high
ramp capacity contribute less in terms of GHG emissions than they do in terms of energy
consumption. They offer cleaner conversion with poor combustion indices [38]. Table 4 lists
the CO2 emission coefficients of the assessed generators in relation to their fuel type [29].
The indicated values account for 5$/tn of released CO2 [37].

Table 4. Emission features of the thermal generating units [39].

Unit i e1 ($/MW2h) e2 ($/MWh) e3 ($/h) SU Emission
Cost ($) Fuel Type

1 0.0022 0.478 7.712 743.84 Higher hydrocarbon
2 0.0022 0.478 7.712 743.84 Higher hydrocarbon
3 0.0022 0.478 7.712 743.84 Higher hydrocarbon
4 0.0022 0.478 7.712 743.84 Higher hydrocarbon
5 0.0022 0.478 7.712 743.84 Higher hydrocarbon
6 0.0022 0.478 7.712 743.84 Higher hydrocarbon
7 0.0022 0.478 7.712 743.84 Higher hydrocarbon
8 0.0022 0.478 7.712 743.84 Higher hydrocarbon
9 0.0018 0.438 1.317 85.36 Diesel
10 0.0018 0.438 1.317 85.36 Diesel
11 0.0018 0.438 1.317 85.36 Diesel
12 0.0022 0.478 7.712 743.84 Higher hydrocarbon
13 0.0022 0.478 7.712 743.84 Higher hydrocarbon
14 0.0022 0.478 7.712 743.84 Higher hydrocarbon
15 0.0022 0.478 7.712 743.84 Higher hydrocarbon
16 0.0018 0.438 1.317 743.84 Diesel
17 0.0018 0.438 1.317 85.36 Diesel
18 0.0018 0.438 1.317 85.36 Diesel

It is worth noting that expert systems and efficient algorithms are needed to handle
the exploration–exploitation rates and, avoiding the local optima trapping, guide the opti-
mization task towards global UC schedules with minimum TPC and maximum reliability.
A realization of the problem based on the proposed approach is included in Figure 11.
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5. Conclusions

In this work, a radically different approach to accelerating the Lagrangian multi-
pliers towards optimal unit commitment has been presented. Based on the most recent
advancements in variational Bayes, the conventional Lagrange relaxation technique has
been enhanced to provide improved generation schedules during longer time-horizons
at the least number of function evaluations. Formulating the complicating dual problem
of unit commitment, an attempt was made in order to design a proper model that is able
to lead optimization towards regions with minimum objective values and maximum un-
certainty. In this way, the solutions cannot be trapped at the local minima but are driven
to global solutions that undeniably improve the conventional mechanism that relied on
simple dual decomposition. Utilizing the characteristics of 18 thermal generating units, the
new approach compared well with its potential competitor under the same power system
paradigm: a 120 h net-load demand. Based on the obtained results, the conventional
Lagrange relaxation falls into oscillations which restrict the overall optimization task. As a
result, to decrease the computational burden, smaller time horizons needed to take place
(24 h load). Even in this case, the total production cost was too high in contrast to the overall
cost obtained by making use of variational Bayes. This solution appears quite promising
since it offers improved overall costs with less of a computational effort. Future works may
regard the inclusion of renewable uncertainty in load and electricity storage.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Celasun, O.; Mineshima, A.; Arregui, N.; Mylonas, V.; Ari, A.; Teodoru, I.; Black, S.; Zhunussova, K.; Iakova, D.; Parry, I. Surging

Energy Prices in Europe in the Aftermath of the War: How to Support the Vulnerable and Speed up the Transition Away from
Fossil Fuels. IMF Work. Pap. 2022, 152, 1–41. Available online: https://ssrn.com/abstract=4184693 (accessed on 1 November
2022). [CrossRef]

2. Arias, A.F.; Lamadrid, A.; Valencia, C. Virtual Power Plant Day Ahead Energy Unit Commitment. In Proceedings of the 55th
Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2022; pp. 1–10. [CrossRef]

3. Feng, Z.-K.; Niu, W.-J.; Wang, W.-C.; Zhou, J.-Z.; Cheng, C.-T. A mixed integer linear programming model for unit commitment of
thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy. Energy 2019, 175, 618–629.
[CrossRef]

4. Nikolaidis, P.; Poullikkas, A. Co-optimization of active power curtailment, load shedding and spinning reserve deficits through
hybrid approach: Comparison of electrochemical storage technologies. IET Renew. Power Gener. 2022, 16, 92–104. [CrossRef]

5. Shahbazitabar, M.; Abdi, H. A novel priority-based stochastic unit commitment considering renewable energy sources and
parking lot cooperation. Energy 2018, 161, 308–324. [CrossRef]

6. Colonetti, B.; Finardi, E.C. Combining Lagrangian relaxation, benders decomposition, and the level bundle method in the
stochastic hydrothermal unit-commitment problem. Int. Trans. Electr. Energy Syst. 2020, 30, e12514. [CrossRef]

7. Shen, J.-J.; Shen, Q.-Q.; Cheng, C.-T.; Zhang, X.-F.; Wang, J. Large-Scale Unit Commitment for Cascaded Hydropower Plants with
Hydraulic Coupling and Head-Sensitive Forbidden Zones: Case of the Xiluodu and Xiangjiaba Hydropower System. J. Water
Resour. Plan. Manag. 2020, 146, 05020023. [CrossRef]

8. Scuzziato, M.R.; Finardi, E.C.; Frangioni, A. Solving stochastic hydrothermal unit commitment with a new primal recovery
technique based on Lagrangian solutions. Int. J. Electr. Power Energy Syst. 2021, 127, 106661. [CrossRef]

9. Nikolaidis, P.; Poullikkas, A. Enhanced Lagrange relaxation for the optimal unit commitment of identical generating units. IET
Gener. Transm. Distrib. 2020, 14, 3920–3928. [CrossRef]

10. Ponciroli, R.; Stauff, N.E.; Ramsey, J.; Ganda, F.; Vilim, R.B. An improved genetic algorithm approach to the unit commit-
ment/economic dispatch problem. IEEE Trans. Power Syst. 2020, 35, 4005–4013. [CrossRef]

11. Jordehi, A.R. An improved particle swarm optimisation for unit commitment in microgrids with battery energy storage systems
considering battery degradation and uncertainties. Int. J. Energy Res. 2021, 45, 727–744. [CrossRef]
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